2019 |
Colabella L, Cisilino AP, Fachinotti V, Kowalczyk P. Multiscale design of elastic solids with biomimetic cancellous bone cellular microstructures. Struct Multidiscip Optim. August 2019;60(2):639-661. |
1996 |
van Rietbergen B. Mechanical Behavior and Adaptation of Trabecular Bone in Relation to Bone Morphology [PhD thesis]. Nijmegen, Netherlands: Catholic University of Nijmegen; 1996. |
2001 |
Turner CH, Burr DB. Experimental techniques for bone mechanics. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:7-1–7-35. |
2001 |
Guo XE. Mechanical properties of cortical and cancellous bone tissue. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:10-1–10-23. |
2001 |
van Rietbergen B, Huiskes R. Elastic constants of cancellous bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:15-1–15-24. |
2002 |
Currey JD. Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press; 2002. |
1998 |
Martin RB, Burr DB, Sharkey NA. Skeletal Tissue Mechanics. New York, NY: Springer-Verlag; 1998. |
2021 |
Bonithon R, Kao AP, Fernández MP, Dunlop JN, Blunn GW, Witte F, Tozzi G. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater. June 2021;127:338-352. |
2000 |
Ding M. Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand. 2000;71(suppl 292):1-45. |
2002 |
Banse X. When density fails to predict bone strength. Acta Orthop Scand. 2002;73(2)(suppl 303):2-57. |
2018 |
Xie S, Wallace RJ, Callanan A, Pankaj P. From tension to compression: asymmetric mechanical behaviour of trabecular bone’s organic phase. Ann Biomed Eng. June 2018;46(6):801-809. |
2019 |
Atkins A, Burke M, Samiezadeh S, Akens MK, Hardisty M, Whyne CM. Elevated microdamage spatially correlates with stress in metastatic vertebrae. Ann Biomed Eng. April 2019;47(4):980-989. |
2016 |
Morales-Orcajo E, Bayod J, Barbosa de Las Casas E. Computational foot modeling: scope and applications. Arch Comput Methods Eng. September 2016;23(3):389-416. |
2003 |
Lin ASP, Barrows TH, Cartmell SH, Guldberg RE. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials. February 2003;24(3):481-489. |
2020 |
Kirby M, Morshed AH, Gomez J, Xiao P, Hu Y, Guo XE, Wang X. Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach. Biomech Model Mechanobiol. August 2020;19(4):1263-1281. |
2004 |
Yeni YN, Dong XN, Fyhrie DP, Les CM. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Bio-med Mater Eng. 2004;14(3):303-310. |
1997 |
Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315-328. |
2001 |
Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone. 2001;28(5):563-571. |
2006 |
Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Müller R. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone. August 2006;39(2):289-299. |
2007 |
Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone. May 2007;40(5):1259-1264. |
2007 |
Perilli E, Baleani M, Öhman C, Baruffaldi F, Viceconti M. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone. November 2007;41(5):760-768. |
2008 |
Bigley RF, Singh M, Hernandez CJ, Kazakia GJ, Martin RB, Keaveny TM. Validity of serial milling-based imaging system for microdamage quantification. Bone. January 2008;42(1):212-215. |
2010 |
Lievers WB, Petryshyn AC, Poljsak AS, Waldman SD, Pilkey AK. Specimen diameter and “side artifacts” in cancellous bone evaluated using end-constrained elastic tension. Bone. August 2010;47(2):371-377. |
2013 |
Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MCH. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. January 2013;52(1):326-336. |
2015 |
Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone. March 2015;72:71-80. |
2020 |
Jin Y, Zhang T, Cheung JPY, Wong TM, Feng X, Sun T, Zu H, Sze KY, Lu WW. A novel mechanical parameter to quantify the microarchitecture effect on apparent modulus of trabecular bone: a computational analysis of ineffective bone mass. Bone. June 2020;135:115314. |
2018 |
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res. August 2018;7(8):524-538. |
2000 |
Akhter MP, Iwaniec UT, Covey MA, Cullen DM, Kimmel DB, Recker RR. Genetic variations in bone density, histomorphometry, and strength in mice. Calcif Tiss Int. October 2000;67(4):337-344. |
2021 |
Fischer B, Hofmann A, Kurz S, Edel M, Zajonz DJ, Roth A, Schleifenbaum S. Influence of the fixation technique on the mechanical properties of human cancellous bone of the femoral head. Clin Biomech (Bristol, Avon). February 1, 2021;82:105280. |
2010 |
Fang G, Ji B, Liu XS, Guo XE. Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique. Comput Methods Biomech Biomed Eng. October 2010;13(5):605-15. |
2007 |
Thurner PJ, Erickson B, Jungmann R, Schriock Z, Weaver JC, Fantner GE, Schitter G, Morse DE, Hansma PK. High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Eng Fract Mech. 2007;74(12):1928-1941. |
2005 |
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Euro J Morphol. February–April 2005;42(1-2):13-21. |
1999 |
Bay BK, Smith TS, Fyhrie DP, Saad M. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech. September 1999;39(3):217-226. |
2017 |
Tsirigotis A, Deligianni DD. Combining digital image correlation and acoustic emission for monitoring of the strain distribution until yielding during compression of bovine cancellous bone. Front Mater. December 20, 2017;4:44. |
2015 |
Goda I, Ganghoffer J-F. 3D plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. Int J Eng Sci. February 2015;87:58-82. |
2020 |
Belda R, Palomar M, Peris-Serra JL, Vercher-Martínez A, Giner E. Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. Int J Mech Sci. January 2020;165:105213. |
2012 |
Skedros JG, Knight AN, Farnsworth RW, Bloebaum RD. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? analysis in the context of trabecular architecture of deer calcanei. J Anat. March 2012;220(3):242-255. |
1994 |
Keaveny TM, Wachtel EF, Ford CM, Hayes WC. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech. 1994;27(9):1137-1146. |
1994 |
Keaveny TM, Wachtel EF, Guo XE, Hayes WC. Mechanical behavior of damaged trabecular bone. J Biomech. November 1994;27(11):1309-1318. |
1996 |
Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 1996;29(10):1309-1317. |
1996 |
Bowman SM, Zeind J, Gibson LJ, Hayes WC, McMahon TA. The tensile behavior of demineralized bovine cortical bone. J Biomech. November 1996;29(11):1497-1501. |
1996 |
Zysset PK, Curnier A. A 3D damage model for trabecular bone based on fabric tensors. J Biomech. December 1996;29(12):1549-1558. |
1998 |
Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. February 1998;31(2):125-133. |
1998 |
Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. Human vertebral body apparent and hard tissue stiffness. J Biomech. November 1998;31(11):1009-1015. |
2001 |
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001;34(5):569-577. |
2001 |
van der Linden JC, Birkenhäger-Frenkel DH, Verhaar JAN, Weinans H. Trabecular bone's mechanical properties are affected by its non-uniform mineral distribution. J Biomech. December 2001;34(12):1573-1580. |
2003 |
Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. July 2003;36(7):897-904. |
2004 |
Nazarian A, Müller R. Time-lapsed microstructural imaging of bone failure behavior. J Biomech. 2004;37(1):55-65. |
2004 |
Bourne BC, van der Meulen MCH. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech. May 2004;37(5):613-621. |
2004 |
Dong XN, Guo XE. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech. August 2004;37(8):1281-1287. |
2004 |
Morgan E, Bayraktar H, Yeh O, Majumdar S, Burghardt A, Keaveny T. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413-1420. |
2006 |
Ün K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus of trabecular bone. J Biomech. 2006;39(11):1955-1963. |
2007 |
Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech. 2007;40(16):3688-3699. |
2008 |
Perilli E, Baleani M, Öhman C, Fognani R, Baruffaldi F, Viceconti M. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech. 2008;41(2):438-446. |
2008 |
Burgers TA, Mason J, Niebur G, Ploeg HL. Compressive properties of trabecular bone in the distal femur. J Biomech. 2008;41(5):1077-1085. |
2008 |
Harrison NM, McDonnell PF, O’Mahoney DC, Kennedy OD, O’Brien FJ, McHugh PE. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech. August 7, 2008;41(11):2589-2596. |
2009 |
Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. February 9, 2009;42(3):249-256. |
2010 |
Cristofolini L, Conti G, Juszczyk M, Cremonini S, Sint Jan SV, Viceconti M. Structural behaviour and strain distribution of the long bones of the human lower limbs. J Biomech. March 22, 2010;43(5):826-835. |
2011 |
Juszczyk MM, Cristofolini L, Viceconti M. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J Biomech. August 11, 2011;44(12):2259-2266. |
2011 |
Green JO, Wang J, Diab T, Vidakovic B, Guldberg RE. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. October 13, 2011;44(15):2659-2666. |
2014 |
Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. February 7, 2014;47(3):702-708. |
2014 |
Roberts BC, Perilli E, Reynolds KJ. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J Biomech. March 21, 2014;47(5):923-934. |
2023 |
Albert DL, Katzenberger MJ, Hunter RL, Agnew AM, Kemper AR. Effects of loading rate, age, and morphology on the material properties of human rib trabecular bone. J Biomech. July 2023;156:111670. |
1998 |
Bowman SM, Guo XE, Cheng DW, Keaveny TM, Gibson LJ, Hayes WC, McMahon TA. Creep contributes to the fatigue behavior of bovine trabecular bone. J Biomech Eng. October 1998;120(5):647-654. |
1999 |
Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP. Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng. February 1999;121(1):99-107. |
1999 |
Bowman SM, Gibson LJ, Hayes WC, McMahon TA. Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone. J Biomech Eng. April 1999;121(2):253-258. |
1999 |
Fenech CM, Keaveny TM. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng. August 1999;121(4):414-422. |
2001 |
Morgan EF, Yeh OC, Chang WC, Keaveny TM. Nonlinear behavior of trabecular bone at small strains. J Biomech Eng. February 2001;123(1):1-9. |
2002 |
Arthur Moore TL, Gibson LJ. Microdamage accumulation in bovine trabecular bone in uniaxial compression. J Biomech Eng. February 2002;124(1):63-71. |
2003 |
Moore TLA, Gibson LJ. Fatigue of bovine trabecular bone. J Biomech Eng. December 2003;125(6):761-768. |
2004 |
Wang X, Liu X, Niebur GL. Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J Biomech Eng. February 2004;126(1):122-125. |
2004 |
Moore TLA, O’Brien FJ, Gibson LJ. Creep does not contribute to fatigue in bovine trabecular bone. J Biomech Eng. June 2004;126(3):321-329. |
2006 |
Dong XN, Guo XE. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng. June 2006;128(3):309-316. |
2007 |
Yosibash Z, Padan R, Joskowicz L, Milgrom C. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng. June 2007;129(3):297-309. |
2007 |
Kim CH, Zhang H, Mikhail G, von Stechow D, Müller R, Kim HS, Guo XE. Effects of thresholding techniques on μCT-based finite element models of trabecular bone. J Biomech Eng. 2007;129(4):481-486. |
2010 |
Lee T, Garlapati RR, Lam K, Lee PVS, Chung Y-S, Choi JB, Vincent TBC, De SD. Fast tool for evaluation of iliac crest tissue elastic properties using the reduced-basis methods. J Biomech Eng. November 2010;132(12):121009. |
2015 |
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. January 2015;137(1):010802. |
2021 |
Bennison MBL, Pilkey AK, Lievers WB. Misalignment error in cancellous bone apparent elastic modulus depends on bone volume fraction and degree of anisotropy. J Biomech Eng. February 2021;143(2):021005. |
2000 |
Nafei A, Danielsen CC, Linde F, Hvid I. Properties of growing trabecular ovine bone, I: mechanical and physical properties. J Bone Joint Surg. August 2000;82B(6):910-920. |
2001 |
van der Linden JC, Homminga J, Verhaar JAN, Weinans H. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res. March 2001;16(3):457-465. |
2005 |
Tommasini SM, Morgan TG, van der Meulen MCH, Jepsen KJ. Genetic variation in structure‐function relationships for the inbred mouse lumbar vertebral body. J Bone Miner Res. May 2005;20(5):817-827. |
2006 |
Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. April 2006;21(4):586-595. |
2006 |
Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res. October 2006;21(10):1608-1617. |
2008 |
Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. February 2008;23(2):223-235. |
2023 |
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative effects of radiation-induced changes in bone mass, structure, and tissue material on vertebral strength in a rat model. J Bone Miner Res. July 2023;38(7):1032-1042. |
2009 |
Barak MM, Currey JD, Weiner S, Shahar R. Are tensile and compressive Young’s moduli of compact bone different? J Mech Behav Biomed Mater. January 2009;2(1):51-60. |
2010 |
Lievers WB, Waldman SD, Pilkey AK. Minimizing specimen length in elastic testing of end-constrained cancellous bone. J Mech Behav Biomed Mater. January 2010;3(1):22-30. |
2013 |
Carretta R, Luisier B, Bernoulli D, Stüssi E, Müller R, Lorenzetti S. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level. J Mech Behav Biomed Mater. 2013;20:6-18. |
2018 |
Frank M, Marx D, Nedelkovski V, Fischer J-T, Pahr DH, Thurner PJ. Dehydration of individual bovine trabeculae causes transition from ductile to quasi-brittle failure mode. J Mech Behav Biomed Mater. November 2018;87:296-305. |
2020 |
Acciaioli A, Falco L, Balean M. Measurement of apparent mechanical properties of trabecular bone tissue: accuracy and limitation of digital image correlation technique. J Mech Behav Biomed Mater. March 2020;103:103542. |
2020 |
Colabella L, Cisilino A, Fachinotti V, Capiel C, Kowalczyk P. Multiscale design of artificial bones with biomimetic elastic microstructures. J Mech Behav Biomed Mater. August 2020;108:103748. |
2020 |
Yan L, Cinar A, Ma S, Abel R, Hansen U, Marrow TJ. A method for fracture toughness measurement in trabecular bone using computed tomography, image correlation and finite element methods. J Mech Behav Biomed Mater. September 2020;109:103838. |
2007 |
Beaupied H, Lespessailles E, Benhamou C-L. Evaluation of macrostructural bone biomechanics. Joint Bone Spine. May 2007;74(3):233-239. |
1997 |
Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone [published correction appears in J Orthop Res. 1995;17(1):151]. J Orthop Res. 1997;15(1):101-110. |
1997 |
Wachtel EF, Keaveny TM. Dependence of trabecular damage on mechanical strain. J Orthop Res. September 1997;15(5):781-787. |
1999 |
Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. May 1999;17(3):346-353. |
1999 |
Chang WCW, Christensen TM, Pinilla TP, Keaveny TM. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric. J Orthop Res. July 1999;17(4):582-585. |
2000 |
Lee TC, Arthur TL, Gibson LJ, Hayes WC. Sequential labelling of microdamage in bone using chelating agents. J Orthop Res. March 2000;18(2):322-325. |
1997 |
Mitton D, Rumelhart C, Hans D, Meunier PJ. The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys. 1997;19(5):464-474. |
2001 |
Keyak JH, Rossi SA, Jones K, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. November 2001;23(9):657-664. |
2012 |
Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int. February 2012;23(2):563-572. |
1999 |
Bay BK, Yerby SA, McLain RF, Toh E. Measurement of strain distributions within vertebral body sections by texture correlation. Spine. January 1, 1999;24(1):10-17. |
2024 |
Shalimov A, Tashkinov M, Silberschmidt VV. Failure of trabecular bone: XFEM modelling of multiple crack growth. Theor Appl Fract Mech. April 2024;130:104338. |
2003 |
Bredbenner TL. Damage Modeling of Vertebral Trabecular Bone [PhD thesis]. Cleveland, OH: Case Western Reserve University; January 2003. |
2010 |
Dux SJ. The Effect of Gamma Radiation Sterilization on Yield Properties and Microscopic Tissue Damage in Dense Cancellous Bone [Master's thesis]. Cleveland, OH: Case Western Reserve University; January 2010. |
2010 |
Ramsey DS. Effects of Gamma Irradiation on the Damage Processes in Human Trabecular Bone [Master's thesis]. Cleveland, OH: Case Western Reserve University; October 2010. |
2003 |
Kim CH. In Vivo Trabecular Bone Response to Mechanical Loading and Parathyroid Hormone Stimulation [PhD thesis]. Columbia University; 2003. |
2007 |
Liu XS. High-Resolution Image Based Micro-Mechanical Modeling of Trabecular Bone [PhD thesis]. Columbia University; 2007. |
2010 |
Zhang XH. High Resolution Imaging Based Patient Specific Biomechanical Assessment of Bone Quality [PhD thesis]. Columbia University; 2010. |
2016 |
Wang J. Plate-Rod Microstructural Modeling for Accurate and Fast Assessment of Bone Strength [PhD thesis]. Columbia University; 2016. |
2017 |
Yu Y. Contributions of Anisotropic and Heterogeneous Tissue Modulus to Apparent Trabecular Bone Mechanical Properties [PhD thesis]. Columbia University; 2017. |
2007 |
Cole JH. The Role of Architecture and Tissue Properties in the Structural Integrity of Human Vertebral Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; May 2007. |
2013 |
Burket JC. Alterations in Tissue Composition and Nanomechanical Properties With Ageing, Osteoporosis, and Treatment [PhD thesis]. Ithaca, NY: Cornell University; January 2013. |
2015 |
Goff M. The Role of Micro and Ultra-Structure in Microdamage Accumulation in Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; August 2015. |
2021 |
Sacher S. Characterization of Trabecular Morphology, Microdamage Accumulation, and Collagen Crosslinking in Bone Tissue from Individuals With Type II Diabetes Mellitus [Master's thesis]. Ithaca, NY: Cornell University; May 2021. |
2005 |
Cook RB. Non-Invasively Assessed Skeletal Bone Status and Its Relationship to the Biomechanical Properties and Condition of Cancellous Bone [PhD thesis]. Cranfield, UK: Cranfield University; December 18, 2005. |
2004 |
İnceoğlu S. Failure of Pedicle Screw-Bone Interface: Biomechanics of Pedicle Screw Insertion and Pullout [PhD thesis]. Cleveland State University; December 2004. |
2018 |
Xie S. Characterisation of Time-Dependent Mechanical Behaviour of Trabecular Bone and Its Constituents [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2018. |
2005 |
Stauber M. Volumetric Spatial Decomposition of Porous Microstructures: A Framework for Element Based Analysis of Trabecular Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2005. |
2007 |
Voide R. Functional Phenotyping of Bone: A Hierarchical Assessment of Bone Failure Characteristics [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2007. |
2014 |
Carretta R. Post-Yield Mechanics and Material Composition of Single Trabeculae: A Combined Experimental and Modelling Approach [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2014. |
2006 |
Nagaraja S. Microstructural Stresses and Strains Associated With Trabecular Bone Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; December 2006. |
2011 |
O'Neal JM. The Effects of Aging and Remodeling on Bone Quality and Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; August 2011. |
1997 |
Bowman SM. Creep of Trabecular Bone [PhD thesis]. Cambridge, MA: Harvard University; May 1997. |
2008 |
Jaumard N. Mechanical and Electromechanical Characterization of a Novel Composite Cellular Solid for Orthopaedic Applications [PhD thesis]. Lawrence, KS: University of Kansas; 2008. |
2020 |
Bennison MBL. The Role of Cancellous Bone Architecture in Misalignment and Side Effect Errors [Master's thesis]. Sudbury, ON: Laurentian University; 2020. |
2006 |
Yang S. Animal Experiment (rabbit) to Demonstrate Changes in Trabecular Bone Mechanical Properties Over Time Using Finite Element Analysis [PhD thesis]. Louisville, KY: University of Louisville; December 2006. |
1996 |
Ford CM. Failure of the Human Proximal Femur: Material and Structural Perspectives [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 1996. |
2001 |
Arthur Moore TL. Microdamage Accumulation in Bovine Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2001. |
2010 |
Johnson TPM. On the Rate-Dependent Constitutive Response of Cortical and Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 2010. |
2015 |
Oftadeh R. Hierarchical Analysis and Multiscale Modelling of Cellular Structures: From Meta Materials to Bone Structure [PhD thesis]. Northeastern University; December 2015. |
2004 |
Wang X. Measurement and Analysis of Microdamage in Bone [PhD thesis]. University of Notre Dame; December 2004. |
1998 |
Hashemi SA. Nonlinear Finite Element Studies of Cementless Knee Implants [PhD thesis]. École polytechnique de Montréal; September 1998. |
2015 |
Bianco R. Biomécanique de l'ancrage de vis pédiculaires pour l'instrumentation du rachis [PhD thesis]. École polytechnique de Montréal; December 2015. |
2003 |
Peterman MM. A Strain Map of the Human Distal Tibia During the Stance Phase of Walking, from Dynamic Cadaver Experiments and Finite Element Analysis Simulations [PhD thesis]. State College, PA: Pennsylvania State University; August 2003. |
2005 |
Buie HR. Use of Finite Element Method Modelling and Rapid Prototyping to Study the Effect of Trabecular Bone Architecture on Apparent Mechanical Properties [Master's thesis]. Queen's University; November 2005. |
2009 |
Lievers WB. Effects of Geometric and Material Property Changes on the Apparent Elastic Properties of Cancellous Bone [PhD thesis]. Queen's University; April 2009. |
2013 |
Morton JJ. An Investigation of Rat Vertebra Failure Behaviour Under Uniaxial Compression Through Time-Lapsed Micro-CT Imaging [Master's thesis]. Queen's University; 2013. |
2023 |
Branni MG. Constitutive Models of Bone: The Human Femur [PhD thesis]. Queensland University of Technology; 2023. |
2007 |
Tang SY-C. Effects of Non-Enzymatic Glycation on the Biomechanical Behavior of Bone [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; 2007. |
2011 |
Yao H. Microstructure-Based Characterization and Modeling of Trabecular Bone Deformation and Failure [PhD thesis]. Southern Methodist University; August 3, 2011. |
2009 |
Alwood JS. Radiation and Mechanical Unloading Effects on Mouse Vertebral Bone: Ground-Based Models of the Spaceflight Environment [PhD thesis]. Stanford University; September 2009. |
2000 |
O’Brien FJ. Microcracks and the Fatigue Behaviour of Compact Bone [PhD thesis]. Trinity College Dublin; October 2000. |
2012 |
Dall'Ara E. QCT Based Finite Element Models of the Human Vertebra and Femur: Validation With Experiments and Comparison With Bone Densitometry [PhD thesis]. Vienna University of Technology; October 2012. |
2014 |
Gross T. Development and Application of 3d CT Image-Based Micro and Macro Finite Element Models for Human Bones and Orthopedic Implant Systems [PhD thesis]. Vienna University of Technology; 2014. |
2021 |
Frank M. Mechanical Characterization of Individual Trabeculae [PhD thesis]. Vienna University of Technology; February 2021. |
2001 |
Boyd SK. Microstructural Bone Adaptation in an Experimental Model of Osteoarthritis [PhD thesis]. Calgary, AB: University of Calgary; January 2001. |
2007 |
MacNeil JAM. Clinical Assessment of Bone Quality [PhD thesis]. Calgary, AB: University of Calgary; June 2007. |
2019 |
Shtil M. Longitudinal Assessment of Mechanical Strength of Trabecular Bone Underlying Bone Marrow Lesions Following Acute Anterior Cruciate Ligament Injuries [Master's thesis]. Calgary, AB: University of Calgary; June 2019. |
1996 |
Keyak JH. Prediction of Femoral Strength Using Automated Finite Element Modeling [PhD thesis]. Berkeley, CA: Berkeley, University of California; 1996. |
1998 |
Kopperdahl DL. Structural Consequences of Damage on the Mechanical Behavior of the Human Vertebral Body [PhD thesis]. Berkeley, CA: Berkeley, University of California; 1998. |
2000 |
Nauman EA. The Analytical Design of a Hybrid Bone Substitute [PhD thesis]. Berkeley, CA: Berkeley, University of California; Spring 2000. |
2000 |
Niebur GL. A Computational Investigation of Multiaxial Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2000. |
2002 |
Morgan EF-i. The Dependence on Anatomic Site of Trabecular Bone Structure-Function Relationships [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2002. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
2018 |
Pendleton MM. Effects of Spaceflight- and Clinically-Relevant Ionizing Radiation Exposure on Bone Biomechanics [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2018. |
2020 |
Bonnheim N. Fundamental Mechanisms of Load Transfer in the Human Vertebral Body Following Lumbar Total Disc Arthroplasty [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2020. |
2020 |
Amromanoh OA. An Experimental Study of the Effect of Bone Inorganic-Organic Composition on the Mechanical Properties [Master's thesis]. Winnipeg, MB: University of Manitoba; April 2020. |
1995 |
Guldberg RE. Mechanical Adaptation of Trabecular Bone Formation in Vivo [PhD thesis]. University of Michigan; 1995. |
2010 |
Wald MJ. Mapping Trabecular Bone Fabric Tensor by in Vivo Magnetic Resonance Imaging [PhD thesis]. Philadelphia, PA: University of Pennsylvania; 2010. |
2020 |
Belda González R. Mechanical and Morphometric Characterization of Cancellous Bone [PhD thesis]. Universität Politècnica de València; March 2020. |
2017 |
Kirby ML. Digital Modeling of Trabecular Bones: Structural Analysis and Probabilistic Modeling Techniques [Master's thesis]. San Antionio, TX: University of Texas at San Antonio; August 2017. |
2020 |
Long EB. The Effect of Staphylococcus Aureus Exposure on White-Tailed Deer Trabecular Bone Stiffness and Yield [Master's thesis]. Rock Hill, SC: Winthrop University; May 2020. |
2008 |
Burgers TA. Press-Fit Fixation and Viscoelastic Response of a Bone-Implant Interface in the Distal Femur [PhD thesis]. University of Wisconsin – Madison; 2008. |
2009 |
García-Rodríguez S. Mechanical Behavior of Trabecular Bone [PhD thesis]. University of Wisconsin – Madison; 2009. |