2001 |
van Rietbergen B, Huiskes R. Elastic constants of cancellous bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:15-1–15-24. |
2001 |
Keaveny TM. Strength of trabecular bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:16-1–16-42. |
2002 |
Currey JD. Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press; 2002. |
2000 |
Ding M. Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand. 2000;71(suppl 292):1-45. |
2000 |
Fyhrie DP, Hoshaw SJ, Hamid MS, Hou FJ. Shear stress distribution in the trabeculae of human vertebral bone. Ann Biomed Eng. October 2000;28(10):1194-1199. |
2001 |
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307-333. |
2004 |
Hellmich C, Ulm F-J, Dormieux L. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? arguments from a multiscale approach. Biomech Model Mechanobiol. June 2004;2(4):219-238. |
2009 |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. June 2009;8(3):195-208. |
2011 |
Varga P, Dall’Ara E, Pahr DH, Pretterklieber M, Zysset PK. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech Model Mechanobiol. July 2011;10(4):431-444. |
2004 |
Yeni YN, Dong XN, Fyhrie DP, Les CM. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Bio-med Mater Eng. 2004;14(3):303-310. |
2000 |
Fyhrie DP, Vashishth D. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone. February 2000;26(2):169-173. |
2000 |
Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac CM. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone. October 2000;27(4):541-550. |
2001 |
Tanck E, Homminga J, van Lenthe GH, Huiskes R. Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone. June 2001;28(6):650-654. |
2002 |
Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone. May 2002;30(5):759-764. |
2003 |
Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744-750. |
2007 |
Nagaraja S, Lin ASP, Guldberg RE. Age-related changes in trabecular bone microdamage initiation. Bone. April 2007;40(4):973-980. |
2007 |
MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone. July 2007;41(1):129-137. |
2007 |
Perilli E, Baleani M, Öhman C, Baruffaldi F, Viceconti M. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone. November 2007;41(5):760-768. |
2009 |
Bevill G, Keaveny TM. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone. April 2009;44(4):579-584. |
2010 |
Varga P, Pahr DH, Baumbach S, Zysset PK. HR-pQCT based FE analysis of the most distal radius section provides an improved prediction of Colles' fracture load in vitro. Bone. November 2010;47(5):982-988. |
2013 |
Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. October 2013;56(2):363-374. |
2008 |
Nazarian A, von Stechow D, Zurakowski D, Müller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tiss Int. December 2008;83(6):368-379. |
2006 |
Teo JCM, Si-Hoe KM, Keh JEL, Teoh SH. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol, Avon). March 2006;21(3):235-244. |
2008 |
Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135-146. |
2011 |
Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. August 2011;469:2128-2138. |
2010 |
Fang G, Ji B, Liu XS, Guo XE. Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique. Comput Methods Biomech Biomed Eng. October 2010;13(5):605-15. |
2004 |
Doblaré M, García JM, Gomez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech. September 2004;71(13-14):1809-1840. |
2005 |
Wang X, Guyette J, Liu X, Roeder RK, Niebur GL. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone. Euro J Morphol. February–April 2005;42(1-2):61-70. |
2005 |
Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct. April 2005;28(4):345-371. |
2018 |
Levrero-Florencio F, Pankaj P. Using non-linear homogenization to improve the performance of macroscopic damage models of trabecular bone. Front Physiol. May 2018;9:545. |
2021 |
Do XN, Hambli R, Ganghoffer J-F. Mesh-independent damage model for trabecular bone fracture simulation and experimental validation. Int J Num Meth Biomed Eng. June 2021;37(6):e3468. |
2012 |
Skedros JG, Knight AN, Farnsworth RW, Bloebaum RD. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? analysis in the context of trabecular architecture of deer calcanei. J Anat. March 2012;220(3):242-255. |
1994 |
Keaveny TM, Wachtel EF, Guo XE, Hayes WC. Mechanical behavior of damaged trabecular bone. J Biomech. November 1994;27(11):1309-1318. |
1996 |
Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 1996;29(10):1309-1317. |
1996 |
Zysset PK, Curnier A. A 3D damage model for trabecular bone based on fabric tensors. J Biomech. December 1996;29(12):1549-1558. |
1998 |
Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. February 1998;31(2):125-133. |
1998 |
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. July 1998;31(7):601-608. |
1998 |
Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. Human vertebral body apparent and hard tissue stiffness. J Biomech. November 1998;31(11):1009-1015. |
2000 |
Keyak J, Rossi S. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209-214. |
2000 |
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. December 2000;33(12):1575-1583. |
2001 |
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001;34(5):569-577. |
2001 |
Niebur GL, Yuen JC, Burghardt AJ, Keaveny TM. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. J Biomech. May 2001;34(5):699-706. |
2001 |
Yeni YN, Fyhrie DP. Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions. J Biomech. December 2001;34(12):1649-1654. |
2002 |
Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J Biomech. 2002;35(2):237-246. |
2003 |
Yeni YN, Fyhrie DP. A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J Biomech. September 2003;36(9):1343-1353. |
2003 |
Homminga J, McCreadie BR, Weinans H, Huiskes R. The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech. October 2003;36(10):1461-1467. |
2004 |
Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. January 2004;37(1):27-35. |
2004 |
Haddock SM, Yeh OC, Mummaneni PV, Rosenberg WS, Keaveny TM. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech. February 2004;37(2):181-187. |
2004 |
Morgan E, Bayraktar H, Yeh O, Majumdar S, Burghardt A, Keaveny T. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413-1420. |
2005 |
Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38(3):377-399. |
2005 |
Nagaraja S, Couse TL, Guldberg RE. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech. 2005;38(4):707-716. |
2005 |
Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. July 2005;38(7):1517-1525. |
2007 |
Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40(8):1745-1753. |
2008 |
Perilli E, Baleani M, Öhman C, Fognani R, Baruffaldi F, Viceconti M. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech. 2008;41(2):438-446. |
2008 |
Burgers TA, Mason J, Niebur G, Ploeg HL. Compressive properties of trabecular bone in the distal femur. J Biomech. 2008;41(5):1077-1085. |
2011 |
Green JO, Nagaraja S, Diab T, Vidakovic B, Guldberg RE. Age-related changes in human trabecular bone: relationship between microstructural stress and strain and damage morphology. J Biomech. 2011;44(12):2279-2285. |
2014 |
Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. February 7, 2014;47(3):702-708. |
2014 |
Roberts BC, Perilli E, Reynolds KJ. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J Biomech. March 21, 2014;47(5):923-934. |
1999 |
Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP. Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng. February 1999;121(1):99-107. |
1999 |
Fenech CM, Keaveny TM. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng. August 1999;121(4):414-422. |
2001 |
Morgan EF, Yeh OC, Chang WC, Keaveny TM. Nonlinear behavior of trabecular bone at small strains. J Biomech Eng. February 2001;123(1):1-9. |
2002 |
Arthur Moore TL, Gibson LJ. Microdamage accumulation in bovine trabecular bone in uniaxial compression. J Biomech Eng. February 2002;124(1):63-71. |
2004 |
Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng. 2004;126(6):677-684. |
2011 |
Nagaraja S, Skrinjar O, Guldberg RE. Spatial correlations of trabecular bone microdamage with local stresses and strains using rigid image registration. J Biomech Eng. June 2011;133(6):064502. |
2015 |
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. January 2015;137(1):010802. |
2020 |
Salem M, Westover L, Adeeb S, Duke K. An equivalent constitutive model of cancellous bone with fracture prediction. J Biomech Eng. December 2020;142(12):121004. |
1996 |
Keyak JH, Lee IY, Nath DS, Skinner HB. Postfailure compressive behavior of tibial trabecular bone in three anatomic directions. J Biomed Mater Res. July 1996;31(3):373-378. |
2005 |
Nazarian A, Stauber M, Müller R. Design and implementation of a novel mechanical testing system for cellular solids. J Biomed Mater Res. 2005;B73(2):400-411. |
2000 |
Whealan KM, Kwak SD, Tedrow JR, Inoue K, Snyder BD. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J Bone Joint Surg. September 2000;82A(9):1240-1251. |
2000 |
Nafei A, Danielsen CC, Linde F, Hvid I. Properties of growing trabecular ovine bone, I: mechanical and physical properties. J Bone Joint Surg. August 2000;82B(6):910-920. |
2005 |
Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Min Metab. March 2005;23(2):174-180. |
1996 |
Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. March 1996;11(3):377-383. |
2006 |
Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. April 2006;21(4):586-595. |
2015 |
Maquer G, Musy SN, Wandel J, Gross T, Zysset PK. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. June 2015;30(6):1000-1008. |
2023 |
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative effects of radiation-induced changes in bone mass, structure, and tissue material on vertebral strength in a rat model. J Bone Miner Res. July 2023;38(7):1032-1042. |
2013 |
Carretta R, Stüssi E, Müller R, Lorenzetti S. Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. J Mech Behav Biomed Mater. August 2013;24:64-73. |
2013 |
Ridha H, Thurner PJ. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater. November 2013;27:94-106. |
2014 |
Gillard F, Boardman R, Mavrogordato M, Hollis D, Sinclair I, Pierron F, Browne M. The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. J Mech Behav Biomed Mater. January 2014;29:480-499. |
2020 |
Bokam P, Germaneau A, Rigoard P, Vendeuvre T, Valle V. Evaluation of fracture properties of cancellous bone tissues using digital image correlation/wedge splitting test method. J Mech Behav Biomed Mater. February 2020;102:103469. |
2020 |
Fleps I, Bahaloo H, Zysset PK, Ferguson SJ, Pálsson H, Helgason B. Empirical relationships between bone density and ultimate strength: a literature review. J Mech Behav Biomed Mater. October 2020;110:103866. |
1997 |
Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone [published correction appears in J Orthop Res. 1995;17(1):151]. J Orthop Res. 1997;15(1):101-110. |
1997 |
Wachtel EF, Keaveny TM. Dependence of trabecular damage on mechanical strain. J Orthop Res. September 1997;15(5):781-787. |
1999 |
Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. May 1999;17(3):346-353. |
1999 |
Chang WCW, Christensen TM, Pinilla TP, Keaveny TM. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric. J Orthop Res. July 1999;17(4):582-585. |
1999 |
Oden ZM, Selvitelli DM, Bouxsein ML. Effect of local density changes on the failure load of the proximal femur. J Orthop Res. September 1999;17(5):661-667. |
2001 |
Keyak JH, Rossi SA, Jones K, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. November 2001;23(9):657-664. |
2012 |
Edwards WB, Troy KL. Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys. April 2012;34(3):290-298. |
2020 |
Mosleh H, Rouhi G, Ghouchani A, Bagheri N. Prediction of fracture risk of a distal femur reconstructed with bone cement: QCSRA, FEA, and in-vitro cadaver tests. Phys Eng Sci Med. March 2020;43(1):269-277. |
2020 |
Aguirre TG, Ingrole A, Fuller L, Seek TW, Fiorillo AR, Sertich JJW, Donahue SW. Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain. PLoS One. August 19, 2020;15(8):e0237042. |
1998 |
Currey JD. Mechanical properties of vertebrate hard tissues. Proc Inst Mech Eng Part H-J Eng Med. 1998;216(6):399-411. |
2020 |
Salem M, Westover L, Adeeb S, Duke K. Prediction of failure in cancellous bone using extended finite element method. Proc Inst Mech Eng Part H-J Eng Med. September 2020;243(9):988-999. |
1997 |
Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine. January 1997;22(2):140-150. |
2001 |
Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R. Ostehoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine. July 2001;26(14):1555-1560. |
2006 |
Gong H, Zhang M, Qin L, Lee KKH, Guo X, Shi S-Q. Regional variations in microstructural properties of vertebral trabeculae with structural groups. Spine. January 2006;31(1):24-32. |
2006 |
Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine. July 15, 2006;31(16):1789-1794. |
2023 |
Saenz N. Fracture Variations in Survivable Versus Fatal Craniofacial Blunt Force Trauma Associated With Intimate Partner Violence [Master's thesis]. Boston University; 2023. |
2010 |
Dux SJ. The Effect of Gamma Radiation Sterilization on Yield Properties and Microscopic Tissue Damage in Dense Cancellous Bone [Master's thesis]. Cleveland, OH: Case Western Reserve University; January 2010. |
2010 |
Loomis DA. A Biomechanical Analysis of Ape and Human Thoracic Vertebrae Using Quantitative Computed Tomography Based Finite Element Models [Master's thesis]. Cleveland, OH: Case Western Reserve University; January 2010. |
2011 |
Genc KO. The Effects of Altered Gravity Environments on the Mechanobiology of Bone: From Bedrest to Spaceflight [PhD thesis]. Cleveland, OH: Case Western Reserve University; August 2011. |
2020 |
Aguirre TG. Bio-Inspired Design for Engineering Applications: Empirical and Finite Element Studies of Biomechanically Adapted Porous Bone Architectures [PhD thesis]. Colorado State University; Summer 2020. |
2007 |
Liu XS. High-Resolution Image Based Micro-Mechanical Modeling of Trabecular Bone [PhD thesis]. Columbia University; 2007. |
2010 |
Zhang XH. High Resolution Imaging Based Patient Specific Biomechanical Assessment of Bone Quality [PhD thesis]. Columbia University; 2010. |
2015 |
Zhou B. Bone Quality Assessment Using High Resolution Peripheral Quantitative Computed Tomography (HR-PQCT) [PhD thesis]. Columbia University; 2015. |
2007 |
Cole JH. The Role of Architecture and Tissue Properties in the Structural Integrity of Human Vertebral Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; May 2007. |
2012 |
Slyfield CR Jr. The Biomechanics of Bone Turnover [PhD thesis]. Ithaca, NY: Cornell University; January 2012. |
2015 |
Goff M. The Role of Micro and Ultra-Structure in Microdamage Accumulation in Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; August 2015. |
2005 |
Cook RB. Non-Invasively Assessed Skeletal Bone Status and Its Relationship to the Biomechanical Properties and Condition of Cancellous Bone [PhD thesis]. Cranfield, UK: Cranfield University; December 18, 2005. |
2004 |
İnceoğlu S. Failure of Pedicle Screw-Bone Interface: Biomechanics of Pedicle Screw Insertion and Pullout [PhD thesis]. Cleveland State University; December 2004. |
2013 |
Souzanchi MF. The Effect of Microarchitecture and Fabric Anisotropy of Trabecular Bone on Its Mechanical Behavior [PhD thesis]. New York, NY: The City University of New York; 2013. |
2011 |
Donaldson FE. On Incorporating Bone Microstructure in Macro-Finite-Element Models [PhD thesis]. Edinburgh, UK: University of Edinburgh; March 2011. |
2016 |
Florencio FL. Multiscale Modelling of Trabecular Bone: From Micro to Macroscale [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2016. |
2018 |
Xie S. Characterisation of Time-Dependent Mechanical Behaviour of Trabecular Bone and Its Constituents [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2018. |
2006 |
Garcia D. Elastic Plastic Damage Laws for Cortical Bone [PhD thesis]. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne; 2006. |
2005 |
Stauber M. Volumetric Spatial Decomposition of Porous Microstructures: A Framework for Element Based Analysis of Trabecular Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2005. |
2008 |
Nazarian A. Relative Interaction of Material and Structure in Normal and Pathologic Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2008. |
2014 |
Carretta R. Post-Yield Mechanics and Material Composition of Single Trabeculae: A Combined Experimental and Modelling Approach [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2014. |
2006 |
Nagaraja S. Microstructural Stresses and Strains Associated With Trabecular Bone Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; December 2006. |
2010 |
Wang JL. Effects of Aging and Remodeling on Bone Microdamage Formation [Master's thesis]. Atlanta, GA: Georgia Institute of Technology; December 2010. |
2011 |
O'Neal JM. The Effects of Aging and Remodeling on Bone Quality and Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; August 2011. |
2010 |
Feng L. Multi-Scale Characterization of Swine Femoral Cortical Bone and Long Bone Defect Repair by Regeneration [PhD thesis]. University of Illinois at Urbana-Champaign; 2010. |
2020 |
Song H. The Effect of Mechanical Loading on Bone During Growth [PhD thesis]. University of Illinois at Urbana-Champaign; 2020. |
2023 |
Moshage SG. Non-Invasive Determinants of Juvenile Equine Bone Strength for Assessing Exercise Interventions [PhD thesis]. University of Illinois at Urbana-Champaign; 2023. |
2007 |
Geris L. Mathematical Modelling of Bone Regeneration During Fracture Healing and Implant Osseointegration [PhD thesis]. Katholieke Universiteit Leuven; May 2007. |
2014 |
Holub O. Biomechanics of Spinal Metastases [PhD thesis]. University of Leeds; April 2014. |
1996 |
Ford CM. Failure of the Human Proximal Femur: Material and Structural Perspectives [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 1996. |
1996 |
Silva MJ. Predicting the Failure Behavior of the Human Vertebral Body [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; February 1996. |
2001 |
Arthur Moore TL. Microdamage Accumulation in Bovine Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2001. |
2001 |
Ewers BJ III. Correlations of Stress and Strain With Alterations in Cartilage and Underlying Subchondral Bone Following an Impact in an in Vivo Animal and an in Vitro Explant Model [PhD thesis]. University of Michigan; 2001. |
2015 |
Oftadeh R. Hierarchical Analysis and Multiscale Modelling of Cellular Structures: From Meta Materials to Bone Structure [PhD thesis]. Northeastern University; December 2015. |
2004 |
Wang X. Measurement and Analysis of Microdamage in Bone [PhD thesis]. University of Notre Dame; December 2004. |
2010 |
Shi X. Effects of Architecture on Microdamage Susceptibility in Trabecular Bone [PhD thesis]. University of Notre Dame; April 2010. |
2012 |
Kelly N. An Experimental and Computational Investigation of the Inelastic Behaviour of Trabecular Bone [PhD thesis]. Galway, Ireland: National University of Ireland Galway; September 2012. |
2020 |
O’Sullivan LM. Time-Sequence of Biomechanical Adaption in Trabecular Tissue During Estrogen Deficiency [PhD thesis]. National University of Ireland Galway; March 2020. |
2022 |
Khakpour S. Multi-Component Finite Element Analysis of Low- Energy Acetabular Fracture: Computational Study of Pelvic Girdle Fracture Mechanism [PhD thesis]. University of Oulu; 2022. |
2012 |
Tozzi G. In Vitro Studies of Bone-Cement Interface and Related Work on Cemented Acetabular Replacement [PhD thesis]. Portsmouth, England: University of Portsmouth; May 29, 2012. |
2020 |
Karali A. Multi-Scale Evaluation of Bone Combining Indentation, in Situ XCT Mechanics and Digital Volume Correlation [PhD thesis]. Portsmouth, England: University of Portsmouth; 2020. |
2005 |
Buie HR. Use of Finite Element Method Modelling and Rapid Prototyping to Study the Effect of Trabecular Bone Architecture on Apparent Mechanical Properties [Master's thesis]. Queen's University; November 2005. |
2001 |
Tanck EJM. Mechanical Regulation of Bone Development [PhD thesis]. Nijmegen, Netherlands: Katholieke Universiteit Nijmegen; June 2001. |
2016 |
Chen Y. Verification and Validation of MicroCT-Based Finite Element Models of Bone Tissue Biomechanics [PhD thesis]. Sheffield, UK: University of Sheffield; July 2016. |
2011 |
Yao H. Microstructure-Based Characterization and Modeling of Trabecular Bone Deformation and Failure [PhD thesis]. Southern Methodist University; August 3, 2011. |
2001 |
Lin W. Development of Quantitative Ultrasound to Determine the Physical Properties of Bone [PhD thesis]. Stony Brook, NY: State University of New York at Stony Brook; May 2001. |
2004 |
Prommin D. Compressive Behavior of Trabecular Bone in the Proximal Tibia Using a Cellular Solid Model [PhD thesis]. Texas A&M University; August 2004. |
2004 |
McNamara LM. Biomechanical Origins of Osteoporosis [PhD thesis]. Trinity College Dublin; March 2004. |
2008 |
Kennedy OD. The Effect of Bone Turnover on Bone Quality and Material Properties [PhD thesis]. Trinity College Dublin; 2008. |
2004 |
Shimko DA. Design and Optimization of a Tissue-Engineered Bone Graft Substitute [PhD thesis]. Tulane University; 2004. |
2009 |
Varga P. Prediction of Distal Radius Fracture Load Using HR-PQCT-Based Finite Element Analysis [PhD thesis]. Vienna University of Technology; December 2009. |
2020 |
Salem M. Investigation of Pelvic Bone Fracture Mechanism and Simulated Treatment [PhD thesis]. Edmonton, AB: University of Alberta; 2020. |
2007 |
Klinck RJ. Establishing in Vivo Micro-CT for Use in Mouse Models of Osteoprosis [Master's thesis]. Calgary, AB: University of Calgary; December 2007. |
2007 |
MacNeil JAM. Clinical Assessment of Bone Quality [PhD thesis]. Calgary, AB: University of Calgary; June 2007. |
2013 |
Enns-Bray WS. Mapping Anisotropy of the Proximal Femur for Improved Image-Based Finite Element Analysis [Master's thesis]. Calgary, AB: University of Calgary; August 2013. |
2018 |
George JK. Using Finite Element Models Under Multiple Loading Conditions to Improve the Association Between Radius and Tibia Microarchitecture and Prevalent Osteoporotic Vertebral Fracture [Master's thesis]. Calgary, AB: University of Calgary; May 2018. |
1996 |
Keyak JH. Prediction of Femoral Strength Using Automated Finite Element Modeling [PhD thesis]. Berkeley, CA: Berkeley, University of California; 1996. |
1998 |
Kopperdahl DL. Structural Consequences of Damage on the Mechanical Behavior of the Human Vertebral Body [PhD thesis]. Berkeley, CA: Berkeley, University of California; 1998. |
2000 |
Niebur GL. A Computational Investigation of Multiaxial Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2000. |
2002 |
Morgan EF-i. The Dependence on Anatomic Site of Trabecular Bone Structure-Function Relationships [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2002. |
2003 |
Bayraktar HH. Multiaxial Strength and Micromechanics of Human Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2003. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
2013 |
Sanyal A. Bone Strength Multi-Axial Behavior: Volume Fraction, Anisotropy and Microarchitecture [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2013. |
2018 |
Pendleton MM. Effects of Spaceflight- and Clinically-Relevant Ionizing Radiation Exposure on Bone Biomechanics [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2018. |
2019 |
Sadoughi S. Micromechanics of Human Bone: Role of Architecture and Tissue Material Properties [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2019. |
2007 |
Ruffoni D. Modeling of Material and Architectural Quality of Trabecular Bone [PhD thesis]. Liège, Belgique: Université de Liège; September 2007. |
2020 |
Amromanoh OA. An Experimental Study of the Effect of Bone Inorganic-Organic Composition on the Mechanical Properties [Master's thesis]. Winnipeg, MB: University of Manitoba; April 2020. |
2000 |
McCreadie BR. Structural and Material Changes in Osteoporosis: Their Impact on the Mechanical Environment of the Osteocyte [PhD thesis]. University of Michigan; 2000. |
2020 |
Patton DM. Changes in Femoral Structure and Function Following Anterior Cruciate Ligament Injury and With Aging [PhD thesis]. University of Michigan; 2020. |
2013 |
Mecke D. Probabilistic Analysis of the Microstructure of Human Trabecular Bone With High and Low Volume Fractions [Master's thesis]. San Antionio, TX: University of Texas at San Antonio; December 2013. |
2018 |
Khor F. Computational Modeling of Hard Tissue Response and Fracture in the Lower Cervical Spine Under Compression Including Age Effects [Master's thesis]. University of Waterloo; 2018. |
2019 |
Knowles NK. Improving Material Mapping in Glenohumeral Finite Element Models: A Multi-Level Evaluation [PhD thesis]. University of Western Ontario; 2019. |
2021 |
Kusins J. A Multi-Level Mechanical Assessment of the Shoulder Coupled With Evaluation of Upper Extremity Predictive Finite Element Models [PhD thesis]. University of Western Ontario; 2021. |
2008 |
Burgers TA. Press-Fit Fixation and Viscoelastic Response of a Bone-Implant Interface in the Distal Femur [PhD thesis]. University of Wisconsin – Madison; 2008. |
2011 |
Aiyangar AK. Physical and Computational Modeling of Subsidence of Anterior Interbody Fusion Devices [PhD thesis]. University of Wisconsin – Madison; 2011. |