Osteoporosis is a skeletal disease which dramatically increases mortality and morbidity. In Europe the total direct cost for osteoporotic fractures are expected to be more than €76 billions in 2050. The current method to estimate the risk of fracture and therefore to decide which patients should be treated against bone loss is based on bone mineral density (BMD) analysis of the hip or of the spine, by means of dual energy X-rays absorptiometry (DXA) or quantitative computed tomography (QCT). However, such techniques have been found not to be reliable in predicting bone strength in in vitro studies. In the last decades the finite element (FE) method has been extensively used to try to enhance the prediction of bone strength in vitro. Nevertheless, such models should be meticulously validated through reliable experiments in vitro to evaluate to which extent they can accurately predict the reality. Therefore, the goal of this thesis was to apply QCT-based FE models of the human vertebra and femur, validate them versus accurate experiments performed in vitro on a large number of specimens and compare their predictive ability with the ones of densitometric measurements usually used in clinical applications.
The first study presented a methodology to compute bone volume fraction (BV/TV) from QCT BMD which could be applied for both vertebra and femur and used to define the material properties of the FE models. The second and third studies reported the results for the human vertebra, while the fourth and fifth studies reported the ones for the proximal femora. In particular, for both anatomical sites novel testing setups were designed to generate fractures which are usually observed in clinics on 37 vertebral bodies and on 72 femora as well as to compute their mechanical properties at the organ level. Moreover, these studies presented the developed automatic procedure to generate the specimen specific nonlinear homogenized voxel FE (hvFE) models from the QCT scans and the procedures to evaluate volumetric/areal BMD from QCT or DXA.
The results of the Thesis showed that 1) similar calibration laws for both anatomical sites can be used to relate QCT BMD to BV/TV, 2) the hvFE models are better predictors of the vertebral and femoral mechanical properties than standard densitometric measurements, 3) and provided meaningful information about fracture location, 4) an improvement in scanning resolution would not improve prediction of vertebral body strength, 5) the DXA is capable to predict well femoral mechanical properties if loaded in a simulated fall and only moderately if loaded by simulating a one legged stance.
In conclusion a large dataset of experimental results (mechanical properties and 3D images) were generated and used to successfully validate QCT-based nonlinear specimen specific hvFE models of the human femur and vertebral body. The experimental results can be used in future studies to validate a number of numerical models based on QCT datasets. Moreover, the developed hvFE models could be used without major modification for pre- clinical and clinical studies in the next future to improve the prediction of the bone strength and indirectly of the risk of fracture in vivo.
Osteoporose ist eine Erkrankung des Skeletts durch die Mortalität und Morbidität dramatisch erhöht werden. In Europa wird erwartet, dass die gesamten direkten Kosten für osteoporotische Frakturen im Jahr 2050 mehr als €76 Milliarden betragen. Die derzeitige Methode mittels der das erwartete Frakturrisiko abgeschätzt wird und somit entschieden wird welche Patienten gegen Knochenabbau behandelt werden basiert auf der Messung Knochendichte (BMD) in Hüfte und Wirbelsäule mittels Dual-Röntgen-Absorptiometrie (DXA) oder quantitativer Computertomographie (QCT). Es wurde jedoch in in vitro Studien festgestellt, dass diese Techniken nicht in der Lage sind die Festigkeit des Knochens zuverlässig vorherzusagen. Im vergangen Jahrzehnt wurde die Finite Elemente (FE) Methode extensiv verwendet um die in vitro Prädiktion der Knochenfestigkeit zu verbessern. Allerdings müssen solche Simulationsmodelle sorgfältig gegen zuverlässige in vitro Experimente validiert werden um festzustellen inwiefern sie in der Lage sind die Realität akkurat vorherzusagen. Daher war das Ziel dieser Arbeit QCT-basierte FE Modelle des menschlichen Femur und Wirbelkörpers gegen akkurat durchgeführte in vitro Experimente mit großer Probenzahl zu validieren und die Genauigkeit der Prädiktionen mit der klinisch verwendeten Densitometrie zu vergleichen.
Die erste Studie präsentiert eine Methode um den Anteil des Knochenvolumens (BV/TV) mittels QCT basierter BMD Messung zu berechnen, wodurch die Materialeigenschaften des FE Modells sowohl für den Femur als auch für den Wirbelkörper berechnet werden können. In der zweiten und dritten Studie werden die Ergebnisse für den menschlichen Wirbelkörper dargelegt, und in der vierten und fünften Studie jene für den proximalen Femur. Für beide anatomische Positionen wurden spezielle experimentelle Konfigurationen entwickelt um in den 37 Wirbelkörper und 72 Femora klinisch relevante Frakturen zu erzeugen und ihre mechanischen Eigenschaften auf der Organebene zu berechnen. Des Weitern präsentieren diese Studien die entwickelte automatische Prozedur um Proben-spezifische, nichtlineare, homogenisierte Voxel-FE (hvFE) Modelle aus den QCT-Bildern zu generieren, sowie Methoden um den BMD basierend auf QCT oder DXA zu berechnen.
Die Ergebnisse dieser Arbeit zeigten, dass 1) ähnliche Kalibriergesetze für Wirbelkörper und Femur verwendet werden können um QCT BMD mit BV/TV zu verknüpfen, dass 2) die hvFE Modelle für beide Knochen bessere Prädiktoren der mechanische Eigenschaften sind als die standardmäßige Densitometrie und 3) zusätzlich bedeutende Informationen über die Frakturposition liefern, dass 4) eine höhere CT-Auflösung nicht zu besseren Festigkeitsprädiktionen der Wirbelkörper führt, dass 5) DXA in der Lage ist die mechanischen Eigenschaften des Femur bei Belastungen während eines simulierten Falls gut vorherzusagen, jedoch nur moderat für die Belastungen während eines simulierten Stehens auf einem Bein.
Schlussendlich wurde eine umfassend Datenbank an experimentellen Ergebnissen (mechanische Eigenschaften und 3D Bilder) gewonnen und wurde erfolgreich verwendet um QCT-basierte, nichtlineare, Proben-spezifische hvFE Modelle des menschlichen Femur und Wirbelkörpers zu generieren. Die experimentellen Ergebnisse können in Zukunft verwendet werden um verschiedenartige, auf QCT-Daten basierende, numerische Modelle zu validieren. Zudem, können die entwickelten hvFE Modelle ohne erhebliche Modifikationen für präklinische und klinische Studien verwendet werden um die Prädiktion der Knochenfestigkeit, und somit indirekt des Frakturrisikos, in vivo zu verbessern.