Trabecular bone is a cellular composite material comprising primarily of mineral and organic phases with their content ratio known to change with age. Therefore, the contribution of bone constituents on bone’s mechanical behaviour, in tension and compression, at varying load levels and with changing porosity (which increases with age) is of great interest, but remains unknown. We investigated the mechanical response of demineralised bone by subjecting a set of bone samples to fully reversed cyclic tension–compression loads with varying magnitudes. We show that the tension to compression response of the organic phase of trabecular bone is asymmetric; it stiffens in tension and undergoes stiffness reduction in compression. Our results indicate that demineralised trabecular bone struts experience inelastic buckling under compression which causes irreversible damage, while irreversible strains due to microcracking are less visible in tension. We also identified that the values of this asymmetric mechanical response is associated to the original bone volume ratio (BV/TV).
Keywords:
Demineralised bone; Inelastic buckling; Stiffness reduction; Bone volume ratio