Multiple cycle tensile creep tests were performed on human and bovine cortical bone specimens. The tests enabled total strain to be decomposed into elastic, linear viscoelastic, creep and permanent plastic components. The results indicate that a stress threshold exists; above which time dependent effects dominate material response and below which the behavior is primarily linear viscoelastic, with time effects playing only a secondary role. A constant stress above the threshold produces a constant steady state creep rate, with the magnitude of the creep rate being an exponential function of the stress magnitude. Additionally, it was found that a major portion of the inelastic strain is always recovered on unloading and that the accujulation of creep strain increases the materials compliance on subsequent loadings below the threshold. These two factors suggest that a damage mechanism is responsible for the nonlinear behavior.