2007 |
Cowin SC, Doty SB. Bone tissue. In: Tissue Mechanics. Boca Raton, FL: Springer; 2007:341-384. |
2015 |
Oroszlány Á, Nagy P, Kovács JG. Compressive properties of commercially available PVC foams intended for use as mechanical models for human cancellous bone. Acta Polytech Hung. 2015;12(2):89-101. |
2005 |
Pressel T, Bouguecha A, Vogt U, Meyer-Lindenberg A, Behrens B-A, Nolte I, Windhagen H. Mechanical properties of femoral trabecular bone in dogs. BioMed Eng Online. March 2005;4:17. |
2013 |
Shang-cheng W, Dong-mei W, Fang W, Qiu-gen W, Chun-hui W, Shan-guang C. Tensile and compressive mechanical property of human bone tissue [in Chinese]. Ch J Tissue Eng Res. 2013;17(7):1180-1184. |
2001 |
Guo XE. Mechanical properties of cortical and cancellous bone tissue. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:10-1–10-23. |
2001 |
van Rietbergen B, Huiskes R. Elastic constants of cancellous bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:15-1–15-24. |
2001 |
Keaveny TM. Strength of trabecular bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:16-1–16-42. |
2022 |
Brynskog E, Iraeus J, Pipkorn B, Davidsson J. Population variance in pelvic response to lateral impacts: a global sensitivity analysis. In: Proceedings of the 2022 International IRCOBI Conference on the Biomechanics of Injury. September 14-16, 2022; Porto, Portugal.173-196. |
2012 |
Nikodem A. Correlations between structural and mechanical properties of human trabecular femur bone. Acta Bioeng Biomech. 2012;14(2):37-46. |
2018 |
Mazurkiewicz A. The effect of trabecular bone storage method on its elastic properties. Acta Bioeng Biomech. 2018;20(1):21-27. |
2021 |
Bonithon R, Kao AP, Fernández MP, Dunlop JN, Blunn GW, Witte F, Tozzi G. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater. June 2021;127:338-352. |
2000 |
Ding M. Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand. 2000;71(suppl 292):1-45. |
2002 |
Banse X. When density fails to predict bone strength. Acta Orthop Scand. 2002;73(2)(suppl 303):2-57. |
2003 |
Judex S, Boyd S, Qin Y-X, Turner S, Ye K, Müller R, Rubin C. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng. January 2003;31(1):12-20. |
2007 |
McDonnell P, McHugh PE, O’Mahoney D. Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng. February 2007;35(2):170-189. |
2018 |
Xie S, Wallace RJ, Callanan A, Pankaj P. From tension to compression: asymmetric mechanical behaviour of trabecular bone’s organic phase. Ann Biomed Eng. June 2018;46(6):801-809. |
2001 |
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307-333. |
2008 |
Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol. February 2008;7(1):27-42. |
2009 |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. June 2009;8(3):195-208. |
2010 |
Harrison NM, McHugh PE. Comparison of trabecular bone behavior in core and whole bone samples using high-resolution modeling of a vertebral body. Biomech Model Mechanobiol. 2010;9(4):469-480. |
2013 |
Harrison NM, McDonnell P, Mullins L, Wilson N, O’Mahoney D, McHugh PE. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol. April 2013;12(2):225-241. |
2004 |
Yeni YN, Dong XN, Fyhrie DP, Les CM. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Bio-med Mater Eng. 2004;14(3):303-310. |
1999 |
Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55-60. |
1999 |
Kabel J, van Rietbergen B, Odgaard A, Huiskes R. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. October 1999;25(4):481-486. |
1999 |
Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T. Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone. 1999;25(4):487-491. |
2000 |
Fyhrie DP, Vashishth D. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone. February 2000;26(2):169-173. |
2001 |
Hernandez CJ, Beaupré GS, Keller TS, Carter DR. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone. July 2001;29(1):74-78. |
2002 |
Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone. May 2002;30(5):759-764. |
2006 |
van Lenthe GH, Stauber M, Müller R. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone. December 2006;39(6):1182-1189. |
2006 |
Nazarian A, Stauber M, Zurakowski D, Snyder BD, Müller R. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone. December 2006;39(6):1196-1202. |
2007 |
Nagaraja S, Lin ASP, Guldberg RE. Age-related changes in trabecular bone microdamage initiation. Bone. April 2007;40(4):973-980. |
2007 |
Perilli E, Baleani M, Öhman C, Baruffaldi F, Viceconti M. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone. November 2007;41(5):760-768. |
2009 |
Bevill G, Eswaran SK, Farahmand F, Keaveny TM. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone. April 2009;44(4):573-578. |
2009 |
Garrison JG, Slaboch CL, Niebur GL. Density and architecture have greater effects on the toughness of trabecular bone than damage. Bone. May 2009;44(5):924-929. |
2011 |
Öhman C, Baleani M, Pani C, Taddei F, Alberghini M, Viceconti M, Manfrini M. Compressive behaviour of child and adult cortical bone. Bone. October 2011;49(4):769-776. |
2014 |
Hernandez CJ, Lambers FM, Widjaja J, Chapa C, Rimnac CM. Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone. September 2014;66:205-213. |
2015 |
Goff MG, Lambers FM, Nguyen TM, Sung J, Rimnac CM, Hernandez CJ. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone. October 2015;79:8-14. |
2016 |
Meyer LA, Johnson MG, Cullen DM, Vivanco JF, Blank RD, Ploeg H-L, Smith EL. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis. Bone. April 2016;85:115-122. |
2019 |
vom Scheidt A, Hemmatian H, Püschel K, Krause M, Amling M, Busse B. Bisphosphonate treatment changes regional distribution of trabecular microstructure in human lumbar vertebrae. Bone. October 2019;127:482-487. |
2018 |
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res. August 2018;7(8):524-538. |
2008 |
Nazarian A, von Stechow D, Zurakowski D, Müller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tiss Int. December 2008;83(6):368-379. |
2008 |
Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135-146. |
2011 |
Cole JH, van der Meulen MCH. Whole bone mechanics and bone quality. Clin Orthop Relat Res. August 2011;469(8):2139-2149. |
2009 |
Rhee Y, Hur J-H, Won Y-Y, Lim S-K, Beak M-H, Cui W-Q, Kim K-G, Kim YE. Assessment of bone quality using finite element analysis based upon micro-CT images. Clin Orthop Surg. March 2009;1(1):40-47. |
2008 |
Verhulp E, Van Rietbergen B, Müller R, Huiskes R. Micro-finite element simulation of trabecular-bone post-yield behaviour: effects of material model, element size and type. Comput Methods Biomech Biomed Eng. August 2008;11(4):389-395. |
2003 |
Judex S, Boyd S, Qin Y-X, Miller L, Müller R, Rubin C. Combining high-resolution micro-computed tomography with material composition to define the quality of bone tissue. Curr Osteoporos Rep. June 2003;1(1):11-19. |
2005 |
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Euro J Morphol. February–April 2005;42(1-2):13-21. |
2005 |
Wang X, Guyette J, Liu X, Roeder RK, Niebur GL. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone. Euro J Morphol. February–April 2005;42(1-2):61-70. |
2018 |
Levrero-Florencio F, Pankaj P. Using non-linear homogenization to improve the performance of macroscopic damage models of trabecular bone. Front Physiol. May 2018;9:545. |
2016 |
Palanca M, Tozzi G, Cristofolini L. The use of digital image correlation in the biomechanical area: a review. Int Biomech. 2016;3(1):1-21. |
2020 |
Belda R, Palomar M, Peris-Serra JL, Vercher-Martínez A, Giner E. Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. Int J Mech Sci. January 2020;165:105213. |
2016 |
Schwiedrzik J, Gross T, Bina M, Pretterklieber M, Zysset P, Pahr D. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone. Int J Num Meth Biomed Eng. April 2016;32(4):e02739. |
1998 |
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. July 1998;31(7):601-608. |
1998 |
Ladd AJC, Kinney JH. Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech. October 1998;31(10):941-945. |
1999 |
Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech. 1999;32(7):673-680. |
1999 |
Jacobs CR, Davis BR, Rieger CJ, Francis JJ, Saad M, Fyhrie DP. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J Biomech. November 1999;32(11):1159-1164. |
2000 |
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. December 2000;33(12):1575-1583. |
2001 |
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001;34(5):569-577. |
2001 |
Yeni YN, Fyhrie DP. Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions. J Biomech. December 2001;34(12):1649-1654. |
2003 |
Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. July 2003;36(7):897-904. |
2003 |
Zysset PK. A review of morphology–elasticity relationships in human trabecular bone: theories and experiments. J Biomech. October 2003;36(10):1469-1485. |
2004 |
Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. January 2004;37(1):27-35. |
2004 |
Bayraktar HH, Keaveny TM. Mechanisms of uniformity of yield strains for trabecular bone. J Biomech. November 2004;37(11):1671-1678. |
2006 |
Guedes RM, Simões JA, Morais JL. Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate. J Biomech. 2006;39(1):49-60. |
2006 |
Wang X, Niebur GL. Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech. 2006;39(5):781-790. |
2006 |
Ün K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus of trabecular bone. J Biomech. 2006;39(11):1955-1963. |
2007 |
Öhman C, Baleani M, Perilli E, Dall’Ara E, Tassani S, Baruffaldi F, Viceconti M. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J Biomech. 2007;40(11):2426-2433. |
2007 |
Nazarian A, Muller J, Zurakowski D, Müller R, Snyder BD. Densitometric, morphometric and mechanical distributions in the human proximal femur. J Biomech. 2007;40(11):2573-2579. |
2007 |
Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982-2989. |
2007 |
Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech. 2007;40(15):3333-3340. |
2007 |
Bevill G, Easley SK, Keaveny TM. Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J Biomech. 2007;40(15):3381-3388. |
2007 |
Wang X, Masse DB, Leng H, Hess KP, Ross RD, Roeder RK, Niebur GL. Detection of trabecular bone microdamage by micro-computed tomography. J Biomech. 2007;40(15):3397-3403. |
2008 |
Dendorfer S, Maier HJ, Taylor D, Hammer J. Anisotropy of the fatigue behaviour of cancellous bone. J Biomech. 2008;41(3):636-641. |
2008 |
Burgers TA, Mason J, Niebur G, Ploeg HL. Compressive properties of trabecular bone in the distal femur. J Biomech. 2008;41(5):1077-1085. |
2008 |
Verhulp E, van Rietbergen B, Müller R, Huiskes R. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech. 2008;41(7):1479-1485. |
2008 |
Harrison NM, McDonnell PF, O’Mahoney DC, Kennedy OD, O’Brien FJ, McHugh PE. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech. August 7, 2008;41(11):2589-2596. |
2009 |
Bevill G, Farhamand F, Keaveny TM. Heterogeneity of yield strain in low-density versus high-density human trabecular bone. J Biomech. September 18, 2009;42(13):2165-2170. |
2009 |
Burgers TA, Lakes RS, García-Rodríguez S, Piller GR, Ploeg H-L. Post-yield relaxation behavior of bovine cancellous bone. J Biomech. 2009;42(16):2728-2733. |
2010 |
Cory E, Nazarian A, Entezari V, Vartanians V, Müller R, Snyder BD. Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-CT based mineral density. J Biomech. March 22, 2010;43(5):953-960. |
2010 |
Tassani S, Öhman C, Baleani M, Baruffaldi F, Viceconti M. Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. J Biomech. April 19, 2010;43(6):1160-1166. |
2010 |
Dux SJ, Ramsey D, Chu EH, Rimnac CM, Hernandez CJ. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization. J Biomech. 2010;43(8):1509-1513. |
2010 |
Wolfram U, Wilke H-J, Zysset PK. Valid μ finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. J Biomech. 2010;43(9):1731-1737. |
2011 |
Wolfram U, Wilke H-J, Zysset PK. Damage accumulation in vertebral trabecular bone depends on loading mode and direction. J Biomech. April 7, 2011;44(7):1164-1169. |
2011 |
Vanderoost J, Jaecques SVN, Perre GVd, Boonen S, D'hooge J, Lauriks W, Lenthe GHv. Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models. J Biomech. May 17, 2011;44(8):1566-1572. |
2011 |
Green JO, Nagaraja S, Diab T, Vidakovic B, Guldberg RE. Age-related changes in human trabecular bone: relationship between microstructural stress and strain and damage morphology. J Biomech. 2011;44(12):2279-2285. |
2011 |
Nazarian A, Arroyo FJA, Rosso C, Aran S, Snyder BD. Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density. J Biomech. September 2, 2011;44(13):2482-2488. |
2011 |
Garrison JG, Gargac JA, Niebur GL. Shear strength and toughness of trabecular bone are more sensitive to density than damage. J Biomech. November 10, 2011;44(16):2747-2754. |
2014 |
Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. February 7, 2014;47(3):702-708. |
2015 |
van Rietbergen B, Ito K. A survey of micro-finite element analysis for clinical assessment of bone strength: the first decade. J Biomech. March 18, 2015;48(5):832-841. |
2020 |
Blondel M, Abidine Y, Assemat P, Palierne S, Swider P. Identification of effective elastic modulus using modal analysis: application to canine cancellous bone. J Biomech. September 18, 2020;110:109972. |
1999 |
Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP. Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng. February 1999;121(1):99-107. |
1999 |
Fenech CM, Keaveny TM. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng. August 1999;121(4):414-422. |
2001 |
Morgan EF, Yeh OC, Chang WC, Keaveny TM. Nonlinear behavior of trabecular bone at small strains. J Biomech Eng. February 2001;123(1):1-9. |
2002 |
Niebur GL, Feldstein MJ, Keaveny TM. Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng. December 2002;124(6):699-705. |
2003 |
Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. August 2003;125(4):434-438. |
2003 |
Moore TLA, Gibson LJ. Fatigue of bovine trabecular bone. J Biomech Eng. December 2003;125(6):761-768. |
2010 |
Charlebois M, Pretterklieber M, Zysset PK. The role of fabric in the large strain compressive behavior of human trabecular bone. J Biomech Eng. 2010;132(12):121006. |
2014 |
Aiyangar AK, Vivanco J, Au AG, Anderson PA, Smith EL, Ploeg H-L. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. J Biomech Eng. September 2014;136(9):091003. |
2021 |
Bennison MBL, Pilkey AK, Lievers WB. Misalignment error in cancellous bone apparent elastic modulus depends on bone volume fraction and degree of anisotropy. J Biomech Eng. February 2021;143(2):021005. |
1998 |
Kinney JH, Ladd AJC. The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res. May 1998;13(5):839-845. |
1999 |
Boskey AL, Wright TM, Blank RD. Collagen and bone strength. J Bone Miner Res. March 1999;14(3):330-335. |
2002 |
Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. July 2002;17(9):1621-1628. |
2007 |
Badiei A, Bottema MJ, Fazzalari NL. Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res. 2007;22(11):1690-1699. |
2010 |
Keaveny TM, Kopperdahl DL, Melton LJ III, Hoffmann PF, Amin S, Riggs BL, Khosla S. Age‐dependence of femoral strength in white women and men. J Bone Miner Res. May 2010;25(5):994-1001. |
1998 |
Yang G, Kabel J, Van Rietbergen B, Odgaard A, Huiskes R, Cowin SC. The anisotropic Hooke’s law for cancellous bone and wood. J Elast. November 1998;53(2):125-146. |
2009 |
Dendorfer S, Maier HJ, Hammer J. Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. J Mech Behav Biomed Mater. January 2009;2(1):113-119. |
2010 |
Lievers WB, Waldman SD, Pilkey AK. Minimizing specimen length in elastic testing of end-constrained cancellous bone. J Mech Behav Biomed Mater. January 2010;3(1):22-30. |
2012 |
Kelly N, McGarry JP. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater. May 2012;9:184-197. |
2013 |
Depalle B, Chapurlat R, Walter-Le-Berre H, Bou-Saïd B, Follet H. Finite element dependence of stress evaluation for human trabecular bone. J Mech Behav Biomed Mater. February 2013;18:200-212. |
2020 |
Martig S, Hitchens PL, Lee PVS, Whitton RC. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone. J Mech Behav Biomed Mater. January 2020;101:103439. |
2020 |
Acciaioli A, Falco L, Balean M. Measurement of apparent mechanical properties of trabecular bone tissue: accuracy and limitation of digital image correlation technique. J Mech Behav Biomed Mater. March 2020;103:103542. |
2020 |
Xie S, Wallace RJ, Pankaj P. Time-dependent behaviour of demineralised trabecular bone: experimental investigation and development of a constitutive model. J Mech Behav Biomed Mater. September 2020;109:103751. |
2021 |
Sas A, Helgason B, Ferguson SJ, van Lenthe GH. Mechanical and morphological characterization of PMMA/bone composites in human femoral heads. J Mech Behav Biomed Mater. March 2021;115:104247. |
2007 |
Beaupied H, Lespessailles E, Benhamou C-L. Evaluation of macrostructural bone biomechanics. Joint Bone Spine. May 2007;74(3):233-239. |
1997 |
Wachtel EF, Keaveny TM. Dependence of trabecular damage on mechanical strain. J Orthop Res. September 1997;15(5):781-787. |
1998 |
Ladd AJC, Kinney JH, Haupt DL, Goldstein SA. Finite‐element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res. September 1998;16(5):622-628. |
1999 |
Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. May 1999;17(3):346-353. |
1999 |
Chang WCW, Christensen TM, Pinilla TP, Keaveny TM. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric. J Orthop Res. July 1999;17(4):582-585. |
2001 |
Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre‐arthritic cartilage damage. J Orthop Res. September 2001;19(5):914-918. |
2002 |
Les CM, Stover SM, Keyak JH, Taylor KT, Kaneps AJ. Stiff and strong compressive properties are associated with brittle post‐yield behavior in equine compact bone material. J Orthop Res. May 2002;20(2):607-614. |
2002 |
Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. July 2002;20(4):801-805. |
2004 |
Day JS, Ding M, Bednarz P, van der Linden JC, Mashiba T, Hirano T, Johnston CC, Burr DB, Hvid I, Sumner DR, Weinans H. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J Orthop Res. May 2004;22(3):465-471. |
2011 |
Karim L, Vashishth D. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J Orthop Res. November 2011;29(11):1739-1744. |
1998 |
Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92-102. |
2008 |
Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. December 2008;30(10):1209-1226. |
2021 |
Bennison MBL, Pilkey AK, Lievers WB. Evaluating a theoretical and an empirical model of “side effects” in cancellous bone. Med Eng Phys. August 2021;94:8-15. |
2010 |
Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S, Viceconti M. Mechanical testing of bones: the positive synergy of finite–element models and in vitro experiments. Philos Trans R Soc A-Math Phys Eng Sci. June 13, 2010;368(1920):2725-2763. |
2013 |
Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One. December 2013;8(12):e83662. |
2011 |
Guérard S, Chevalier Y, Moreschi H, Defontaine M, Callé S, Mitton D. Young’s modulus repeatability assessment using cycling compression loading on cancellous bone. Proc Inst Mech Eng Part H-J Eng Med. November 2011;225(11):1113-1117. |
2013 |
Vivanco J, Garcia S, Ploeg HL, Alvarez G, Cullen D, Smith EL. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc Inst Mech Eng Part H-J Eng Med. August 2013;227(8):904-912. |
2021 |
Metzner F, Neupetsch C, Fischer J-P, Drossel W-G, Heyde C-E, Schleifenbaum S. Influence of osteoporosis on the compressive properties of femoral cancellous bone and its dependence on various density parameters. Sci Rep. June 24, 2021;11(1):13284. |
2003 |
Bredbenner TL. Damage Modeling of Vertebral Trabecular Bone [PhD thesis]. Cleveland, OH: Case Western Reserve University; January 2003. |
2010 |
Dux SJ. The Effect of Gamma Radiation Sterilization on Yield Properties and Microscopic Tissue Damage in Dense Cancellous Bone [Master's thesis]. Cleveland, OH: Case Western Reserve University; January 2010. |
2010 |
Ramsey DS. Effects of Gamma Irradiation on the Damage Processes in Human Trabecular Bone [Master's thesis]. Cleveland, OH: Case Western Reserve University; October 2010. |
2007 |
Liu XS. High-Resolution Image Based Micro-Mechanical Modeling of Trabecular Bone [PhD thesis]. Columbia University; 2007. |
2010 |
Zhang XH. High Resolution Imaging Based Patient Specific Biomechanical Assessment of Bone Quality [PhD thesis]. Columbia University; 2010. |
2007 |
Cole JH. The Role of Architecture and Tissue Properties in the Structural Integrity of Human Vertebral Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; May 2007. |
2015 |
Goff M. The Role of Micro and Ultra-Structure in Microdamage Accumulation in Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; August 2015. |
2017 |
Walk RE. Bone Phenotype of Toll-Like Receptor 5 Deficient (TLR5KO) Mice and PTH Treated Osteopenic Sheep [Master's thesis]. Ithaca, NY: Cornell University; August 2017. |
2018 |
Chen JTH. Alterations in Bone Tissue Properties With Parathyroid Hormone Treatment [PhD thesis]. Ithaca, NY: Cornell University; May 2018. |
2018 |
Torres AM. Fatigue Behavior of Cancellous Bone, Microdamage Accumulation, and Biologically Inspired Cellular Solids [PhD thesis]. Ithaca, NY: Cornell University; August 2018. |
2021 |
Sacher S. Characterization of Trabecular Morphology, Microdamage Accumulation, and Collagen Crosslinking in Bone Tissue from Individuals With Type II Diabetes Mellitus [Master's thesis]. Ithaca, NY: Cornell University; May 2021. |
2005 |
Cook RB. Non-Invasively Assessed Skeletal Bone Status and Its Relationship to the Biomechanical Properties and Condition of Cancellous Bone [PhD thesis]. Cranfield, UK: Cranfield University; December 18, 2005. |
2004 |
İnceoğlu S. Failure of Pedicle Screw-Bone Interface: Biomechanics of Pedicle Screw Insertion and Pullout [PhD thesis]. Cleveland State University; December 2004. |
1999 |
Yang G. Averaging and Bounding of Anisotropic Elastic Constants [PhD thesis]. New York, NY: The City University of New York; 1999. |
2016 |
Florencio FL. Multiscale Modelling of Trabecular Bone: From Micro to Macroscale [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2016. |
2018 |
Xie S. Characterisation of Time-Dependent Mechanical Behaviour of Trabecular Bone and Its Constituents [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2018. |
2005 |
Day JS. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties [PhD thesis]. Erasmus University Rotterdam; 2005. |
2005 |
Stauber M. Volumetric Spatial Decomposition of Porous Microstructures: A Framework for Element Based Analysis of Trabecular Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2005. |
2007 |
Voide R. Functional Phenotyping of Bone: A Hierarchical Assessment of Bone Failure Characteristics [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2007. |
2008 |
Nazarian A. Relative Interaction of Material and Structure in Normal and Pathologic Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2008. |
2006 |
Nagaraja S. Microstructural Stresses and Strains Associated With Trabecular Bone Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; December 2006. |
2010 |
Wang JL. Effects of Aging and Remodeling on Bone Microdamage Formation [Master's thesis]. Atlanta, GA: Georgia Institute of Technology; December 2010. |
2011 |
O'Neal JM. The Effects of Aging and Remodeling on Bone Quality and Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; August 2011. |
2012 |
Hamed E. Multiscale Modeling of Elastic Moduli and Strength of Bone [PhD thesis]. University of Illinois at Urbana-Champaign; 2012. |
2016 |
Currier EJ. Predicting Peak Load of the Femoral Neck Using Structural Parameters [Master's thesis]. University of Illinois at Urbana-Champaign; 2016. |
2020 |
Song H. The Effect of Mechanical Loading on Bone During Growth [PhD thesis]. University of Illinois at Urbana-Champaign; 2020. |
2023 |
Moshage SG. Non-Invasive Determinants of Juvenile Equine Bone Strength for Assessing Exercise Interventions [PhD thesis]. University of Illinois at Urbana-Champaign; 2023. |
2020 |
Bennison MBL. The Role of Cancellous Bone Architecture in Misalignment and Side Effect Errors [Master's thesis]. Sudbury, ON: Laurentian University; 2020. |
2014 |
Holub O. Biomechanics of Spinal Metastases [PhD thesis]. University of Leeds; April 2014. |
2001 |
Arthur Moore TL. Microdamage Accumulation in Bovine Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2001. |
2015 |
Oftadeh R. Hierarchical Analysis and Multiscale Modelling of Cellular Structures: From Meta Materials to Bone Structure [PhD thesis]. Northeastern University; December 2015. |
2004 |
Wang X. Measurement and Analysis of Microdamage in Bone [PhD thesis]. University of Notre Dame; December 2004. |
2011 |
Garrison JG. The Relative Importance of Stress State, Microarchitecture, and Damage Burden in the Failure Behavior of Trabecular Bone [PhD thesis]. University of Notre Dame; April 2011. |
2012 |
Kelly N. An Experimental and Computational Investigation of the Inelastic Behaviour of Trabecular Bone [PhD thesis]. Galway, Ireland: National University of Ireland Galway; September 2012. |
2020 |
O’Sullivan LM. Time-Sequence of Biomechanical Adaption in Trabecular Tissue During Estrogen Deficiency [PhD thesis]. National University of Ireland Galway; March 2020. |
2011 |
Wagnac É. Expérimentation et modélisation détaillée de la colonne vertébrale pour étudier le rôle de facteurs anatomiques et biomécaniques sur les traumatismes rachidiens [PhD thesis]. École polytechnique de Montréal; November 2011. |
2012 |
Tozzi G. In Vitro Studies of Bone-Cement Interface and Related Work on Cemented Acetabular Replacement [PhD thesis]. Portsmouth, England: University of Portsmouth; May 29, 2012. |
2020 |
Karali A. Multi-Scale Evaluation of Bone Combining Indentation, in Situ XCT Mechanics and Digital Volume Correlation [PhD thesis]. Portsmouth, England: University of Portsmouth; 2020. |
2005 |
Buie HR. Use of Finite Element Method Modelling and Rapid Prototyping to Study the Effect of Trabecular Bone Architecture on Apparent Mechanical Properties [Master's thesis]. Queen's University; November 2005. |
2009 |
Lievers WB. Effects of Geometric and Material Property Changes on the Apparent Elastic Properties of Cancellous Bone [PhD thesis]. Queen's University; April 2009. |
2013 |
Morton JJ. An Investigation of Rat Vertebra Failure Behaviour Under Uniaxial Compression Through Time-Lapsed Micro-CT Imaging [Master's thesis]. Queen's University; 2013. |
2013 |
Schumacher Y. Comparison of Two Loading Surface Preparation Methods on Rat Vertebral Bodies for Compression Testing [Master's thesis]. Queen's University; September 2013. |
2019 |
Heney AP. Effect of Fatigue-Induced Microdamage on the Compressive Properties of Bovine Trabecular Bone [Master's thesis]. Queen's University; September 2019. |
2022 |
Beloglowka K. Ex Vivo Mechanical Testing and FEA Modelling of Bovine Trabecular Bone [Master's thesis]. Queen's University; September 2022. |
2022 |
Kunath BA. Design and Validation of an Open-Source 3D Printable Bioreactor System for Ex Vivo Bone Culture [Master's thesis]. Queen's University; June 2022. |
2023 |
Branni MG. Constitutive Models of Bone: The Human Femur [PhD thesis]. Queensland University of Technology; 2023. |
2018 |
Groenen KHJ. Spinal (in)stability in Metastatic Bone Disease: Experimental, Computational, and Clinical Perspectives [PhD thesis]. Radboud University; 2018. |
2011 |
Karim L. The Biomolecular Basis of Bone Fracture [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; November 2011. |
2011 |
Yao H. Microstructure-Based Characterization and Modeling of Trabecular Bone Deformation and Failure [PhD thesis]. Southern Methodist University; August 3, 2011. |
2004 |
McNamara LM. Biomechanical Origins of Osteoporosis [PhD thesis]. Trinity College Dublin; March 2004. |
2006 |
Verhulp E. Analyses of Trabecular Bone Failure [PhD thesis]. Eindhoven, The Netherlands: Eindhoven University of Technology; 2006. |
2014 |
Gross T. Development and Application of 3d CT Image-Based Micro and Macro Finite Element Models for Human Bones and Orthopedic Implant Systems [PhD thesis]. Vienna University of Technology; 2014. |
2022 |
Davis RA. Investigating the Effects of Aging and Prolonged Opioid Use on Bone Histomorphometry, Quality, and Biomechanics [PhD thesis]. University of Akron; August 2022. |
2001 |
Speirs AD. Calcium Phosphate Cement Composites in Revision Hip Replacement [Master's thesis]. Vancouver, BC: University of British Columbia; February 2001. |
2016 |
Gustafson HM. Quantifying the Response of Vertebral Bodies to Compressive Loading Using Digital Image Correlation [PhD thesis]. Vancouver, BC: University of British Columbia; October 2016. |
2001 |
Boyd SK. Microstructural Bone Adaptation in an Experimental Model of Osteoarthritis [PhD thesis]. Calgary, AB: University of Calgary; January 2001. |
2002 |
Wohl GR. Bone Mechanics in Transplanted Osteochondral Grafts [PhD thesis]. Calgary, AB: University of Calgary; September 2002. |
2007 |
MacNeil JAM. Clinical Assessment of Bone Quality [PhD thesis]. Calgary, AB: University of Calgary; June 2007. |
2012 |
Nishiyama KKS. In Vivo Assessment of Bone Microarchitecture and Estimated Bone Strength [PhD thesis]. Calgary, AB: University of Calgary; October 2012. |
2013 |
Enns-Bray WS. Mapping Anisotropy of the Proximal Femur for Improved Image-Based Finite Element Analysis [Master's thesis]. Calgary, AB: University of Calgary; August 2013. |
2017 |
Fung A. Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal [Master's thesis]. Calgary, AB: University of Calgary; April 2017. |
1998 |
Kopperdahl DL. Structural Consequences of Damage on the Mechanical Behavior of the Human Vertebral Body [PhD thesis]. Berkeley, CA: Berkeley, University of California; 1998. |
2000 |
Niebur GL. A Computational Investigation of Multiaxial Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2000. |
2002 |
Morgan EF-i. The Dependence on Anatomic Site of Trabecular Bone Structure-Function Relationships [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2002. |
2003 |
Bayraktar HH. Multiaxial Strength and Micromechanics of Human Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2003. |
2004 |
Kazakia GJ. Development, Analysis, and Imaging of a Tissue Engineered Trabecular Bone Substitute [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2004. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
2013 |
Sanyal A. Bone Strength Multi-Axial Behavior: Volume Fraction, Anisotropy and Microarchitecture [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2013. |
2018 |
Pendleton MM. Effects of Spaceflight- and Clinically-Relevant Ionizing Radiation Exposure on Bone Biomechanics [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2018. |
2019 |
Sadoughi S. Micromechanics of Human Bone: Role of Architecture and Tissue Material Properties [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2019. |
2020 |
Caffrey JP. Experimental Biomechanics of Musculoskeletal Injury Models and Repair Implants [PhD thesis]. San Diego (UCSD), University of California; 2020. |
2018 |
Hilton K. The Effect of Boundary Conditions and Architecture on the Response of Cancellous Bone [Master's thesis]. Cape Town, South Africa: University of Cape Town; October 18, 2018. |
2007 |
Ruffoni D. Modeling of Material and Architectural Quality of Trabecular Bone [PhD thesis]. Liège, Belgique: Université de Liège; September 2007. |
2020 |
Amromanoh OA. An Experimental Study of the Effect of Bone Inorganic-Organic Composition on the Mechanical Properties [Master's thesis]. Winnipeg, MB: University of Manitoba; April 2020. |
2013 |
Iori G. Micro-FEM Models Based on Micro-CT Reconstructions for the in Vitro Characterization of the Elastic Properties of Trabecular Bone Tissue [Master's thesis]. University of Bologna; 2013. |
2017 |
Palanca M. In Vitro Full-Field Methods for the Biomechanical Characterization of Spine Segments [PhD thesis]. University of Bologna; March 2017. |
2019 |
Martig S. Compressive Fatigue Life and Micromorphology of Equine Metacarpal Subchondral Bone [PhD thesis]. University of Melbourne; June 2019. |
2011 |
Wolfram U. Mechanical Multiscale Characterisation of Vertebral Trabecular Bone for the Prediction of Vertebral Fracture Risk [PhD thesis]. University of Ulm; 2011. |
2020 |
Belda González R. Mechanical and Morphometric Characterization of Cancellous Bone [PhD thesis]. Universität Politècnica de València; March 2020. |
2018 |
Burnett WD. Relationships Between Image-Based and Mechanical Bone Properties With Pain in Knee Osteoarthritis [PhD thesis]. University of Saskatchewan; July 2018. |
2016 |
Boruah S. A Viscoelastic Model for High Strain Rate Loading of the Human Calvarium [PhD thesis]. Charlottesville, VA: University of Virginia; May 2016. |
2018 |
Khor F. Computational Modeling of Hard Tissue Response and Fracture in the Lower Cervical Spine Under Compression Including Age Effects [Master's thesis]. University of Waterloo; 2018. |
2008 |
Burgers TA. Press-Fit Fixation and Viscoelastic Response of a Bone-Implant Interface in the Distal Femur [PhD thesis]. University of Wisconsin – Madison; 2008. |
2009 |
García-Rodríguez S. Mechanical Behavior of Trabecular Bone [PhD thesis]. University of Wisconsin – Madison; 2009. |
2011 |
Aiyangar AK. Physical and Computational Modeling of Subsidence of Anterior Interbody Fusion Devices [PhD thesis]. University of Wisconsin – Madison; 2011. |
2011 |
Vivanco Morales JF. Investigation of Fabrication and Environmental Effects on Bioceramic Bone Scaffolds [PhD thesis]. University of Wisconsin – Madison; 2011. |
2016 |
Johnson MG. Endothelin-Converting Enzyme-1 Dependent Endothelin 1 Signaling in Osteogenesis [PhD thesis]. University of Wisconsin – Madison; 2016. |
2016 |
Meyer LA. Testing and Modeling Mechanical Properties of Ex Vivo Trabecular Bone [PhD thesis]. University of Wisconsin – Madison; 2016. |