2002 |
Müller R. The Zürich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging. 2002;13(5):307-322. |
2001 |
Guo XE. Mechanical properties of cortical and cancellous bone tissue. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:10-1–10-23. |
2001 |
van Rietbergen B, Huiskes R. Elastic constants of cancellous bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:15-1–15-24. |
2001 |
Keaveny TM. Strength of trabecular bone. In: Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001:16-1–16-42. |
2009 |
Shi X, Wang X, Niebur GL. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann Biomed Eng. 2009;37(2):354-362. |
2001 |
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307-333. |
2004 |
Hellmich C, Ulm F-J, Dormieux L. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? arguments from a multiscale approach. Biomech Model Mechanobiol. June 2004;2(4):219-238. |
2009 |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. June 2009;8(3):195-208. |
1997 |
Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315-328. |
1997 |
Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 1997;21(2):191-199. |
1997 |
Beck JD, Canfield BL, Haddock SM, Chen TJH, Kothari M, Keaveny TM. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. Bone. 1997;21(3):281-287. |
1999 |
Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55-60. |
2002 |
Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. February 2002;30(2):404-411. |
2002 |
Rubin C, Turner AS, Mallinckrodt C, Jerome C, Mcleod K, Bain S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. March 2002;30(3):445-452. |
2002 |
Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone. May 2002;30(5):759-764. |
2002 |
Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. June 2002;30(6):842-848. |
2003 |
Pistoia W, van Rietbergen B, Rüegsegger P. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone. December 2003;33(6):937-945. |
2005 |
Shefelbine SJ, Simon U, Claes L, Gold A, Gabet Y, Bab I, Müller R, Augat P. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone. March 2005;36(3):480-488. |
2006 |
Stauber M, Müller R. Volumetric spatial decomposition of trabecular bone into rods and plates: a new method for local bone morphometry. Bone. 2006;38(4):475-484. |
2006 |
Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone. December 2006;39(6):1218-1225. |
2008 |
MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. June 2008;42(6):1203-1213. |
2009 |
Liu XS, Zhang XH, Guo XE. Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone. August 2009;45(2):158-163. |
2010 |
Shi X, Liu XS, Wang X, Guo XE, Niebur GL. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. May 2010;46(5):1260-1266. |
2020 |
Varga P, Willie BM, Stephan C, Kozloff KM, Zysset PK. Finite element analysis of bone strength in osteogenesis imperfecta. Bone. April 2020;133:115250. |
2021 |
Li Y, Tseng W-J, de Bakker CMJ, Zhao H, Chung R, Liu XS. Peak trabecular bone microstructure predicts rate of estrogen-deficiency-induced bone loss in rats. Bone. April 2021;145:115862. |
2002 |
van Rietbergen B, Majumdar S, Newitt D, MacDonald B. High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon). February 2002;17(2):81-88. |
2008 |
Verhulp E, Van Rietbergen B, Müller R, Huiskes R. Micro-finite element simulation of trabecular-bone post-yield behaviour: effects of material model, element size and type. Comput Methods Biomech Biomed Eng. August 2008;11(4):389-395. |
2001 |
Weiss JA, Gardiner JC. Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 2001;29(3):303-371. |
2005 |
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Euro J Morphol. February–April 2005;42(1-2):13-21. |
2019 |
Werner B, Ovesy M, Zysset PK. An explicit micro‐FE approach to investigate the post‐yield behaviour of trabecular bone under large deformations. Int J Num Meth Biomed Eng. May 2019;35(5):e3188. |
1998 |
Ladd AJC, Kinney JH. Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech. October 1998;31(10):941-945. |
1998 |
Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. Human vertebral body apparent and hard tissue stiffness. J Biomech. November 1998;31(11):1009-1015. |
1998 |
Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech. December 1998;31(12):1187-1192. |
1999 |
Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech. 1999;32(7):673-680. |
1999 |
Jacobs CR, Davis BR, Rieger CJ, Francis JJ, Saad M, Fyhrie DP. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J Biomech. November 1999;32(11):1159-1164. |
2000 |
Charras GT, Guldberg RE. Improving the local solution accuracy of large-scale digital image-based finite element analyses. J Biomech. February 2000;33(2):255-259. |
2000 |
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. December 2000;33(12):1575-1583. |
2001 |
van der Linden JC, Birkenhäger-Frenkel DH, Verhaar JAN, Weinans H. Trabecular bone's mechanical properties are affected by its non-uniform mineral distribution. J Biomech. December 2001;34(12):1573-1580. |
2002 |
Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J Biomech. 2002;35(2):237-246. |
2003 |
Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. July 2003;36(7):897-904. |
2004 |
Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. January 2004;37(1):27-35. |
2004 |
Verhulp E, van Rietbergen B, Huiskes R. A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech. September 2004;37(9):1313-1320. |
2004 |
Morgan E, Bayraktar H, Yeh O, Majumdar S, Burghardt A, Keaveny T. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413-1420. |
2008 |
Renders GAP, Mulder L, Langenbach GEJ, van Ruijven LJ, van Eijden TMGJ. Biomechanical effect of mineral heterogeneity in trabecular bone. J Biomech. August 2008;41(13):2793-2798. |
2009 |
Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. February 9, 2009;42(3):249-256. |
2010 |
Shi X, Liu XS, Wang X, Guo XE, Niebur GL. Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. J Biomech. September 17, 2010;43(13):2460-2466. |
2011 |
Golden KM, Murphy NB, Cherkaev E. Spectral analysis and connectivity of porous microstructures in bone. J Biomech. 2011;44(2):337-344. |
2011 |
Cherkaev E, Bonifasi-Lista C. Characterization of structure and properties of bone by spectral measure method. J Biomech. January 11, 2011;44(2):345-351. |
1998 |
Guldberg RE, Hollister SJ, Charras GT. The accuracy of digital image-based finite element models. J Biomech Eng. 1998;120(2):289-295. |
1998 |
Zysset PK, Goulet RW, Hollister SJ. A global relationship between trabecular bone morphology and homogenized elastic properties. J Biomech Eng. October 1998;120(5):640-646. |
1999 |
Niebur GL, Yuen JC, Hsia AC, Keaveny TM. Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng. December 1999;121(6):629-635. |
2001 |
Pistoia W, van Rietbergen B, Laib A, Rüegsegger P. High-resolution three-dimensional-pqct images can be an adequate basis for in-vivo μfe analysis of bone. J Biomech Eng. October 2001;123(2):176-183. |
2001 |
Adachi T, Tsubota K-i, Tomita Y, Hollister SJ. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J Biomech Eng. October 2001;123(5):403-409. |
2004 |
Wang X, Liu X, Niebur GL. Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J Biomech Eng. February 2004;126(1):122-125. |
2007 |
Kim CH, Zhang H, Mikhail G, von Stechow D, Müller R, Kim HS, Guo XE. Effects of thresholding techniques on μCT-based finite element models of trabecular bone. J Biomech Eng. 2007;129(4):481-486. |
2009 |
Bonifasi-Lista C, Cherkaev E, Yeni YN. Analytical approach to recovering bone porosity from effective complex shear modulus. J Biomech Eng. December 2009;131(12):121003. |
2014 |
Chen Y, Pani M, Taddei F, Mazzà C, Li X, Viceconti M. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data: a convergence study. J Biomech Eng. October 2014;136(10):101013. |
2021 |
Bennison MBL, Pilkey AK, Lievers WB. Misalignment error in cancellous bone apparent elastic modulus depends on bone volume fraction and degree of anisotropy. J Biomech Eng. February 2021;143(2):021005. |
1997 |
Guldberg RE, Caldwell NJ, Guo XE, Goulet RW, Hollister SJ, Goldstein SA. Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res. August 1997;12(8):1295-1302. |
2000 |
Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, Combs KS, Higgins RE, Pierce SA, Stevens ML. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three‐dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res. September 2000;15(9):1786-1797. |
2001 |
van der Linden JC, Homminga J, Verhaar JAN, Weinans H. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res. March 2001;16(3):457-465. |
2003 |
Van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. October 2003;18(10):1781-1788. |
2003 |
Kim CH, Takai E, Zhou H, Von Stechow D, Müller R, Dempster DW, Guo XE. Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment. J Bone Miner Res. December 2003;18(12):2116-2125. |
2006 |
Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. April 2006;21(4):586-595. |
2006 |
Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res. October 2006;21(10):1608-1617. |
2008 |
Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. February 2008;23(2):223-235. |
2010 |
Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, Shane E, Guo XE. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. April 2010;25(4):746-756. |
2010 |
Liu XS, Cohen A, Shane E, Stein E, Rogers H, Kokolus SL, Yin PT, McMahon DJ, Lappe JM, Recker RR, Guo XE. Individual trabeculae segmentation (ITS)–based morphological analysis of high‐resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res. July 2010;25(7):1496-1505. |
2010 |
Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, Lang T, Guo XE. Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR‐pQCT, and cQCT in premenopausal women. J Bone Miner Res. October 2010;25(10):2229-2238. |
2010 |
Stein EM, Liu XS, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Zhang C, Yin PT, Cosman F, Nieves J, Guo XE, Shane E. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res. December 2010;25(12):2572-2581. |
2012 |
Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE. Individual trabecula segmentation (ITS)‐based morphological analyses and microfinite element analysis of HR‐pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. February 2012;27(2):263-272. |
2003 |
van Ruijven LJ, Giesen EBW, Farella M, van Eijden TMGJ. Prediction of mechanical properties of the cancellous bone of the mandibular condyle. J Dent Res. October 2003;82(10):819-823. |
2013 |
Depalle B, Chapurlat R, Walter-Le-Berre H, Bou-Saïd B, Follet H. Finite element dependence of stress evaluation for human trabecular bone. J Mech Behav Biomed Mater. February 2013;18:200-212. |
2014 |
Gillard F, Boardman R, Mavrogordato M, Hollis D, Sinclair I, Pierron F, Browne M. The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. J Mech Behav Biomed Mater. January 2014;29:480-499. |
2017 |
Chen Y, Dall’Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater. January 2017;65:644-651. |
1997 |
Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone [published correction appears in J Orthop Res. 1995;17(1):151]. J Orthop Res. 1997;15(1):101-110. |
1998 |
Ladd AJC, Kinney JH, Haupt DL, Goldstein SA. Finite‐element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res. September 1998;16(5):622-628. |
2007 |
Fritsch A, Hellmich C. “Universal” microstructural patterns in bone: micromechanics-based prediction of anisotropic material behavior. J Theo Biol. February 21, 2007;244(4):597-620. |
2010 |
Kadir MRA, Syahrom A, Öchsner A. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Med Biol Eng Comput. May 2010;48(5):497-505. |
1998 |
Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med Eng Phys. October 1998;20(7):515-522. |
2005 |
Kaminsky J, Rodt T, Gharabaghi A, Forster J, Brand G, Samii M. A universal algorithm for an improved finite element mesh generation: mesh quality assessment in comparison to former automated mesh-generators and an analytic model. Med Eng Phys. 2005;27(5):383-394. |
2007 |
MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. December 2007;29(10):1096-1105. |
2013 |
Madi K, Tozzi G, Zhang Q, Tong J, Cossey A, Au A, Hollis D, Hild F. Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med Eng Phys. September 2013;35(9):1298. |
1998 |
Müller R, Gerber SC, Hayes WC. Micro-compression: a novel technique for the nondestructive assessment of local bone failure. Technol Health Care. December 1998;6(5-6):433-444. |
2003 |
Kim CH. In Vivo Trabecular Bone Response to Mechanical Loading and Parathyroid Hormone Stimulation [PhD thesis]. Columbia University; 2003. |
2007 |
Liu XS. High-Resolution Image Based Micro-Mechanical Modeling of Trabecular Bone [PhD thesis]. Columbia University; 2007. |
2010 |
Zhang XH. High Resolution Imaging Based Patient Specific Biomechanical Assessment of Bone Quality [PhD thesis]. Columbia University; 2010. |
2016 |
Wang J. Plate-Rod Microstructural Modeling for Accurate and Fast Assessment of Bone Strength [PhD thesis]. Columbia University; 2016. |
2017 |
Yu Y. Contributions of Anisotropic and Heterogeneous Tissue Modulus to Apparent Trabecular Bone Mechanical Properties [PhD thesis]. Columbia University; 2017. |
2007 |
Cole JH. The Role of Architecture and Tissue Properties in the Structural Integrity of Human Vertebral Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; May 2007. |
2018 |
Torres AM. Fatigue Behavior of Cancellous Bone, Microdamage Accumulation, and Biologically Inspired Cellular Solids [PhD thesis]. Ithaca, NY: Cornell University; August 2018. |
2005 |
Day JS. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties [PhD thesis]. Erasmus University Rotterdam; 2005. |
2005 |
Stauber M. Volumetric Spatial Decomposition of Porous Microstructures: A Framework for Element Based Analysis of Trabecular Bone [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2005. |
2007 |
Voide R. Functional Phenotyping of Bone: A Hierarchical Assessment of Bone Failure Characteristics [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2007. |
2002 |
Follet H. Caractérisation Biomécanique Et Modélisation 3D Par Imagerie X Et IRM Haute Résolution De L’os Spongieux Humain: Evaluation Du Risque Fracturaire [PhD thesis]. Institut national des sciences appliquées de Lyon (INSA Lyon); 2002. |
2009 |
Moesen M. Modeling of the Geometry and Mechanical Behavior of Bone Scaffolds [PhD thesis]. Katholieke Universiteit Leuven; June 2009. |
1996 |
Silva MJ. Predicting the Failure Behavior of the Human Vertebral Body [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; February 1996. |
2001 |
Arthur Moore TL. Microdamage Accumulation in Bovine Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2001. |
2004 |
Wang X. Measurement and Analysis of Microdamage in Bone [PhD thesis]. University of Notre Dame; December 2004. |
2010 |
Shi X. Effects of Architecture on Microdamage Susceptibility in Trabecular Bone [PhD thesis]. University of Notre Dame; April 2010. |
2015 |
Gargac J. Evaluation of Bone Healing, Damage, and Adaptation Using Computational Modeling and Image Processing Techniques [PhD thesis]. University of Notre Dame; July 2015. |
1996 |
Livesay GA. Development of Homogenization Theory for Soft Tissues Undergoing Finite Elastic Deformation [PhD thesis]. University of Pittsburgh; 1996. |
2019 |
Mustafy T. The Short and Long Term Effects of in Vivo Cyclic Axial Compression Applied During Puberty on Bone Growth, Morphometry and Biomechanics [PhD thesis]. École polytechnique de Montréal; July 2019. |
2016 |
Chen Y. Verification and Validation of MicroCT-Based Finite Element Models of Bone Tissue Biomechanics [PhD thesis]. Sheffield, UK: University of Sheffield; July 2016. |
2011 |
Yao H. Microstructure-Based Characterization and Modeling of Trabecular Bone Deformation and Failure [PhD thesis]. Southern Methodist University; August 3, 2011. |
2006 |
Verhulp E. Analyses of Trabecular Bone Failure [PhD thesis]. Eindhoven, The Netherlands: Eindhoven University of Technology; 2006. |
2014 |
Gross T. Development and Application of 3d CT Image-Based Micro and Macro Finite Element Models for Human Bones and Orthopedic Implant Systems [PhD thesis]. Vienna University of Technology; 2014. |
2007 |
MacNeil JAM. Clinical Assessment of Bone Quality [PhD thesis]. Calgary, AB: University of Calgary; June 2007. |
2013 |
Enns-Bray WS. Mapping Anisotropy of the Proximal Femur for Improved Image-Based Finite Element Analysis [Master's thesis]. Calgary, AB: University of Calgary; August 2013. |
2000 |
Nauman EA. The Analytical Design of a Hybrid Bone Substitute [PhD thesis]. Berkeley, CA: Berkeley, University of California; Spring 2000. |
2002 |
Morgan EF-i. The Dependence on Anatomic Site of Trabecular Bone Structure-Function Relationships [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2002. |
2003 |
Bayraktar HH. Multiaxial Strength and Micromechanics of Human Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2003. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
1995 |
Guldberg RE. Mechanical Adaptation of Trabecular Bone Formation in Vivo [PhD thesis]. University of Michigan; 1995. |
1996 |
Lerner AL. Influence of Mechanical Stresses on Normal Bone Growth in the Developing Femur [PhD thesis]. University of Michigan; 1996. |
2000 |
Borodkin JL. The Influence of Interface Micromechanics on the Biological Fixation of Porous-Coated Implants [PhD thesis]. University of Michigan; 2000. |
2000 |
McCreadie BR. Structural and Material Changes in Osteoporosis: Their Impact on the Mechanical Environment of the Osteocyte [PhD thesis]. University of Michigan; 2000. |
2002 |
Palmer ML. A Non-Linear Hierarchical Model of Stretch-Induced Injury to Skeletal Muscle Fibers [PhD thesis]. University of Michigan; 2002. |
2005 |
Lin C-Y. Solid-Fluid Mixture Microstructure Design of Composite Materials With Application to Tissue Engineering Scaffold Design [PhD thesis]. University of Michigan; 2005. |
2006 |
Jongpaiboonkit L. Calcium Phosphate Scaffolds for Bone Tissue Engineering and Self-Association PEG-PLLA Diblock Copolymer for Controlled Drug Delivery System [PhD thesis]. University of Michigan; 2006. |
2011 |
Saito E. Designed Biodegradable and Osteoconductive Porous Scaffolds for Human Trabecular Bone [PhD thesis]. University of Michigan; 2011. |
2010 |
Schwen LO. Composite Finite Elements for Trabecular Bone Microstructures [PhD thesis]. Bonn, Germany: Rheinische Friedrich-Wilhelms-Universität Bonn; July 2010. |
2010 |
Wald MJ. Mapping Trabecular Bone Fabric Tensor by in Vivo Magnetic Resonance Imaging [PhD thesis]. Philadelphia, PA: University of Pennsylvania; 2010. |
2017 |
de Bakker CMJ. Structural Adaptations of the Maternal Skeleton in Response to Reproduction and Lactation [PhD thesis]. Philadelphia, PA: University of Pennsylvania; 2017. |
2021 |
Li Y. Adaptation of Maternal Skeletal Mechano-Responsiveness, Osteocyte Microenvironment, and Bone Marrow Adipocytes in Response to Reproduction and Lactation [PhD thesis]. Philadelphia, PA: University of Pennsylvania; 2021. |
2018 |
Hosseini Kalajahi SM. Addressing Partial Volume Artifacts With Quantitative Computed Tomography-Based Finite Element Modeling of the Human Proximal Tibia [Master's thesis]. University of Saskatchewan; April 2018. |
2002 |
Gardiner JC. Computational Modeling of Ligament Mechanics [PhD thesis]. University of Utah; May 2002. |
2000 |
Simmons CA. Modelling and Characterization of Mechanically Regulated Tissue Formation Around Bone-Interfacing Implants [PhD thesis]. University of Toronto; 2000. |
2001 |
Zhang N. Investigation of Bone Mechanical Properties At the Microscopic Level Using Ultrasonic Methods and Numerical Simulation [PhD thesis]. Detroit, MI: Wayne State University; 2001. |
2005 |
Cao KD. Development of a 4-Vertebrae, Detailed Finite Element Model of Thoracolumbar Spine [PhD thesis]. Detroit, MI: Wayne State University; August 2005. |
2009 |
García-Rodríguez S. Mechanical Behavior of Trabecular Bone [PhD thesis]. University of Wisconsin – Madison; 2009. |