2011 |
Wang R, Gupta HS. Deformation and fracture mechanisms of bone and nacre. Ann Rev Mater Res. August 2011;41:41-73. |
2021 |
Albert DL, Katzenberger MJ, Agnew AM, Kemper AR. Failure of human rib cortical bone during low rate compression tests. In: Proceedings of the 2021 International IRCOBI Conference on the Biomechanics of Injury. September 8-10, 2021; Online.787-788. |
2022 |
Brynskog E, Iraeus J, Pipkorn B, Davidsson J. Population variance in pelvic response to lateral impacts: a global sensitivity analysis. In: Proceedings of the 2022 International IRCOBI Conference on the Biomechanics of Injury. September 14-16, 2022; Porto, Portugal.173-196. |
2003 |
Stitzel JD, Cormier JM, Barretta JT, Kennedy EA, Smith EP, Rath AL, Duma SM, Matsuoka F. Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J. 2003;47:243-265. SAE 2003-22-0012. |
2017 |
Schwiedrzik J, Taylor A, Casari D, Wolfram U, Zysset P, Michler J. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomater. September 15, 2017;60:302. |
2019 |
Zhai X, Guo Z, Gao J, Kedir N, Nie Y, Claus B, Sun T, Xiao X, Fezzaa K, Chen WW. High-speed X-ray visualization of dynamic crack initiation and propagation in bone. Acta Biomater. May 2019;90:278-286. |
2021 |
Casari D, Michler J, Zysset P, Schwiedrzik J. Microtensile properties and failure mechanisms of cortical bone at the lamellar level. Acta Biomater. January 15, 2021;120:135-145. |
2010 |
Launey ME, Chen P-Y, McKittrick J, Ritchie RO. Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. April 2010;6(4):1505-1514. |
2013 |
Untaroiu CD, Yue N, Shin J. A finite element model of the lower limb for simulating automotive impacts. Ann Biomed Eng. March 2013;41(3):513-526. |
2010 |
Launey ME, Buehler MJ, Ritchie RO. On the mechanistic origins of toughness in bone. Ann Rev Mater Sci. 2010;40:25-53. |
2003 |
Nalla RK, Kinney JH, Ritchie RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials. October 2003;24(22):3955-3968. |
2003 |
Kruzic JJ, Nalla RK, Kinney JH, Ritchie RO. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials. 2003;24(28):5209-5221. |
2005 |
Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials. January 2005;26(2):217-231. |
2006 |
Yang QD, Cox BN, Nalla RK, Ritchie RO. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials. March 2006;27(9):2095-2113. |
2011 |
Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials. December 2011;32(34):8892-8904. |
2013 |
Harrison NM, McDonnell P, Mullins L, Wilson N, O’Mahoney D, McHugh PE. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol. April 2013;12(2):225-241. |
2004 |
Nalla RK, Kruzic JJ, Ritchie RO. On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone. May 2004;34(5):790-798. |
2004 |
Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone. December 2004;35(6):1240-1246. |
2006 |
Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A. Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone. April 2006;38(4):466-474. |
2006 |
Yang QD, Cox BN, Nalla RK, Ritchie RO. Re-evaluating the toughness of human cortical bone. Bone. June 2006;38(6):878-887. |
2006 |
Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Müller R. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone. August 2006;39(2):289-299. |
2006 |
Ruppel ME, Burr DB, Miller LM. Chemical makeup of microdamaged bone differs from undamaged bone. Bone. August 2006;39(2):318-324. |
2007 |
Yan J, Mecholsky JJ Jr, Clifton KB. How tough is bone? application of elastic–plastic fracture mechanics to bone. Bone. February 2007;40(2):479-484. |
2008 |
Ritchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW III. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. November 2008;43(5):798-812. |
2009 |
Voide R, Schneider P, Stauber M, Wyss P, Stampanoni M, Sennhauser U, van Lenthe GH, Müller R. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone. August 2009;45(2):164-173. |
2010 |
Barth HD, Launey ME, MacDowell AA, Ager JW III, Ritchie RO. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone. June 2010;46(6):1475-1485. |
2010 |
Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, Ager JW III, Ritchie RO, Alliston T. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. June 2010;46(6):1564-1573. |
2013 |
Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. February 2013;52(2):611-622. |
2013 |
Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. August 2013;55(2):495-500. |
2013 |
Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. October 2013;56(2):363-374. |
2015 |
Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R. Shear deformation and fracture of human cortical bone. Bone. February 2015;71:25-35. |
2016 |
Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, Wolfram U. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. December 2016;93:196-211. |
2020 |
Loundagin LL, Haider IT, Cooper DML, Edwards WB. Association between intracortical microarchitecture and the compressive fatigue life of human bone: a pilot study. Bone Rep. June 2020;12:100254. |
2019 |
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone: a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res. 2019;7:15. |
2015 |
Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tiss Int. September 2015;97(3):201-212. |
2012 |
Abdel-Wahab AA, Maligno AR, Silberschmidt VV. Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comp Mater Sci. February 2012;52(1):128-135. |
2008 |
Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. September 2008;42(4):579-591. |
2007 |
Thurner PJ, Erickson B, Jungmann R, Schriock Z, Weaver JC, Fantner GE, Schitter G, Morse DE, Hansma PK. High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Eng Fract Mech. 2007;74(12):1928-1941. |
2013 |
Ural A, Mischinski S. Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech. May 2013;103:141-152. |
2013 |
Li S, Abdel-Wahab A, Silberschmidt VV. Analysis of fracture processes in cortical bone tissue. Eng Fract Mech. September 2013;110:448. |
2020 |
Dapaah D, Badaoui R, Bahmani A, Montesano J, Willett T. Modelling the micro-damage process zone during cortical bone fracture. Eng Fract Mech. February 1, 2020;224:106811. |
2020 |
Soni A, Kumar S, Kumar N. Effect of parametric uncertainties on fracture behavior of cortical bone using XIGA. Eng Fract Mech. June 15, 2020;233:107079. |
2007 |
Budyn É, Hoc T. Multiple scale modeling for cortical bone fracture in tension using X-FEM. Eur J Comput Mech. 2007;16(2):213-236. |
2005 |
Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct. April 2005;28(4):345-371. |
2006 |
Peterlik H, Roschger P, Klaushofer K, Fratzl P. Orientation dependent fracture toughness of lamellar bone. Int J Fract. June 2006;139(3-4):395-405. |
2006 |
Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P. Fibrillar level fracture in bone beyond the yield point. Int J Fract. June 2006;139(3-4):425-436. |
2007 |
Vashishth D. Hierarchy of bone microdamage at multiple length scales. Int J Fatigue. June 2007;29(6):1024-1033. |
2013 |
Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Fracture process in cortical bone: X-FEM analysis of microstructured models. Int J Fract. November 2013;184(1):43-55. |
2020 |
Belda R, Palomar M, Peris-Serra JL, Vercher-Martínez A, Giner E. Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. Int J Mech Sci. January 2020;165:105213. |
2009 |
Budyn É, Hoc T. Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging. Int J Num Meth Eng. 2009;82(8):940-965. |
2011 |
Mischinski S, Ural A. Finite element modeling of microcrack growth in cortical bone. J Appl Mech. July 2011;78(4):041016. |
2005 |
Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. July 2005;38(7):1517-1525. |
2006 |
Ural A, Vashishth D. Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech. 2006;39(16):2974-2982. |
2007 |
Ural A, Vashishth D. Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J Biomech. 2007;40(7):1606-1614. |
2008 |
Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41(2):356-367. |
2008 |
Yan J, Daga A, Kumar R, Mecholsky JJ. Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J Biomech. 2008;41(9):1929-1936. |
2008 |
Wang X, Zauel RR, Fyhrie DP. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method. J Biomech. August 28, 2008;41(12):2654-2658. |
2010 |
Sun X, Jeon JH, Blendell J, Akkus O. Visualization of a phantom post-yield deformation process in cortical bone. J Biomech. July 20, 2010;43(10):1989-1996. |
2010 |
Smith LJ, Schirer JP, Fazzalari NL. The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets. J Biomech. December 1, 2010;43(16):3144-3149. |
2014 |
Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech. March 21, 2014;47(5):1117-1126. |
2013 |
Hardisty MR, Zauel R, Stover SM, Fyhrie DP. The importance of intrinsic damage properties to bone fragility: a finite element study. J Biomech Eng. January 2013;135(1):011004. |
2019 |
Shitole P, Gupta A, Ghosh R. Fracture mechanism and fracture toughness at the interface between cortical and cancellous bone. J Biomech Eng. November 2019;141(11):114502. |
2020 |
Singh J, Sharma NK, Sarker MD, Naghieh S, Sehgal SS, Chen DXB. Assessment of elastic-plastic fracture behavior of cortical bone using a small punch testing technique. J Biomech Eng. January 2020;142(1):011001. |
2012 |
McCormack J, Wang XS, Stover SM, Gibeling JC, Fyhrie DP. Analysis of miniature single‐ and double‐notch bending specimens for estimating the fracture toughness of cortical bone. J Biomed Mater Res. April 2012;A100(4):1080-1088. |
2013 |
Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, Fratzl P. Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res. December 2013;28(8):1837-1845. |
2019 |
Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E, Gludovatz B, Vettorazzi E, Zontone F, Püschel K, Amling M, Ritchie RO, Busse B. Mechanical competence and bone quality develop during skeletal growth. J Bone Miner Res. August 2019;34(8):1461-1472. |
2004 |
Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14(14):2115-2123. |
2006 |
Ager JW III, Balooch G, Ritchie RO. Fracture, aging, and disease in bone. J Mater Res. August 2006;21(8):1878-1892. |
2011 |
Montalbano T, Feng G. Nanoindentation characterization of the cement lines in ovine and bovine femurs. J Mater Res. April 28, 2011;26(8):1036-1041. |
2011 |
Kulin RM, Jiang F, Vecchio KS. Effects of age and loading rate on equine cortical bone failure. J Mech Behav Biomed Mater. January 2011;4(1):57-75. |
2011 |
Jungmann R, Szabo ME, Schitter G, Tang RY-S, Vashishth D, Hansma PK, Thurner PJ. Local strain and damage mapping in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater. May 2011;4(4):523-534. |
2011 |
Luo Q, Nakade R, Dong X, Rong Q, Wang X. Effect of mineral–collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model. J Mech Behav Biomed Mater. October 2011;4(7):943-952. |
2011 |
Ural A, Zioupos P, Buchanan D, Vashishth D. The effect of strain rate on fracture toughness of human cortical bone: a finite element study. J Mech Behav Biomed Mater. October 2011;4(7):1021-1032. |
2011 |
Koester KJ, Barth HD, Ritchie RO. Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves. J Mech Behav Biomed Mater. October 2011;4(7):1504-1513. |
2012 |
Christen D, Levchuk A, Schori S, Schneider P, Boyd SK, Müller R. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage. J Mech Behav Biomed Mater. April 2012;8:184-193. |
2013 |
Ridha H, Thurner PJ. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater. November 2013;27:94-106. |
2019 |
Gustafsson A, Khayyeri H, Wallin M, Isaksson H. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. J Mech Behav Biomed Mater. February 2019;90:556-565. |
2020 |
Obata Y, Bale HA, Barnard HS, Parkinson DY, Alliston T, Acevedo C. Quantitative and qualitative bone imaging: a review of synchrotron radiation microtomography analysis in bone research. J Mech Behav Biomed Mater. October 2020;110:103887. |
2020 |
Loundagin LL, Edwards WB. Stressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform bone. J Mech Behav Biomed Mater. November 2020;110:104002. |
2021 |
Ma Z, Qiang Z, Zeng K, Xiao J, Zhou L, Zu L, Zhao H, Ren L. Prediction of cross section fracture path of cortical bone through nanoindentation array. J Mech Behav Biomed Mater. April 2021;116:104303. |
2022 |
Shin M, Zhang M, vom Scheidt A, Pelletier MH, Walsh WR, Martens PJ, Kruzic JJ, Busse B, Gludovatz B. Impact of test environment on the fracture resistance of cortical bone. J Mech Behav Biomed Mater. May 2022;129:105155. |
2019 |
Zhai X, Gao J, Nie Y, Guo Z, Kedir N, Claus B, Sun T, Fezzaa K, Xiao X, Chen WW. Real-time visualization of dynamic fractures in porcine bones and the loading-rate effect on their fracture toughness. J Mech Phys Solids. October 2019;(131):358-371. |
2020 |
Zhai X, Nie Y, Gao J, Kedir N, Claus B, Sun T, Fezzaa K, Chen WW. The effect of loading direction on the fracture behaviors of cortical bone at a dynamic loading rate. J Mech Phys Solids. September 2020;142:104015. |
2007 |
Gupta HS, Fratzl P, Kerschnitzki M, Benecke G, Wagermaier W, Kirchner HOK. Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J R Soc Interface. April 22, 2007;4(3):277-282. |
2006 |
Nalla RK, Kruzic JJ, Kinney JH, Balooch M, Ager JW III, Ritchie RO. Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater Sci Eng C Mater Biol Appl. September 2006;26(8):1251-1260. |
2006 |
Adharapurapu RR, Jiang F, Vecchio KS. Dynamic fracture of bovine bone. Mater Sci Eng C Mater Biol Appl. September 2006;26(8):1325-1332. |
2008 |
Gupta HS, Zioupos P. Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys. December 2008;30(10):1209-1226. |
2011 |
Cong A, Buijs JOD, Dragomir-Daescu D. In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur. Med Eng Phys. March 2011;33(2):164-173. |
2012 |
Edwards WB, Troy KL. Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys. April 2012;34(3):290-298. |
2005 |
Nyman JS, Reyes M, Wang X. Effect of ultrastructural changes on the toughness of bone. Micron. October–December 2005;36(7-8):566-582. |
2005 |
Gupta HS, Wagermaier W, Zickler GA, Aroush DR-B, Funari SS, Roschger P, Wagner HD, Fratzl P. Nanoscale deformation mechanisms in bone. Nano Lett. October 2005;5(10):2108-2111. |
2006 |
Tai K, Ulm F-J, Ortiz C. Nanogranular origins of the strength of bone. Nano Lett. November 8, 2006;6(11):2520-2525. |
2007 |
Buehler MJ. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. July 25, 2007;18(9):295102. |
2013 |
Nair AK, Gautieri A, Chang S-W, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;r:1724. |
2005 |
Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. August 2005;4(8):612-616. |
2006 |
Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. January 2006;5(1):52-55. |
2007 |
Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. June 2007;6(6):454-462. |
2008 |
Koester KJ, Ager JW III, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. August 2008;7(8):672-677. |
2011 |
Ritchie RO. The conflicts between strength and toughness. Nat Mater. November 2011;10(11):817-822. |
2009 |
Ritchie R, Buehler M, Hansma P. Plasticity and toughness in bone. Phys Today. June 2009;62(6):41-47. |
2011 |
Larrue A, Rattner A, Peter Z-A, Olivier C, Laroche N, Vico L, Peyrin F. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone. PLoS One. 2011;6(7):e21297. |
2013 |
Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One. December 2013;8(12):e83662. |
2020 |
Salem M, Westover L, Adeeb S, Duke K. Prediction of failure in cancellous bone using extended finite element method. Proc Inst Mech Eng Part H-J Eng Med. September 2020;243(9):988-999. |
2006 |
Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA. November 21, 2006;103(47):17741-17746. |
2012 |
Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, Vashishth D. Dilatational band formation in bone. Proc Natl Acad Sci USA. November 20, 2012;109(47):19178-19183. |
2016 |
Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci USA. March 15, 2016;113(11):2892-2897. |
2017 |
Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, Lorich DG, Lane JM, Ritchie RO, Busse B, Donnelly E. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci USA. August 15, 2017;114(33):8722-8727. |
2007 |
Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. November 2007;52(8):1263-1334. |
2008 |
Meyers MA, Chen P-Y, Lin AY-M, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. January 2008;53(1):1-206. |
2009 |
Espinosa HD, Rim JE, Barthelat F, Buehler MJ. Merger of structure and material in nacre and bone: perspectives on de novo biomimetic materials. Prog Mater Sci. November 2009;54(8):1059-1100. |
2014 |
Fonseca H, Moreira-Gonçalves D, Coriolano H-JA, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. January 2014;44(1):37-53. |
2019 |
Tertuliano OA. Small-Scale Deformation and Fracture of Hard Biomaterials [PhD thesis]. Pasadena, CA: California Institute of Technology; 2019. |
2018 |
Butcher AL. Deformation and Fracture of Soft Materials for Cartilage Tissue Engineering [PhD thesis]. Cambridge, UK: University of Cambridge; May 2018. |
2020 |
Mehraban Alvandi L. Diffuse Damage Repair Mechanism in Bone [PhD thesis]. New York, NY: The City College of New York; 2020. |
2017 |
Heveran CM. Bone Tissue Material Properties Are Altered in Chronic Kidney Disease to Lower Fracture Resistance Determining Bone Quality [PhD thesis]. University of Colorado; 2017. |
2022 |
Senwar B. Bone Material Quality, Structure, and Functional Relationships Contribute to Bone Strength and Toughness [Master's thesis]. University of Colorado; 2022. |
2015 |
Goff M. The Role of Micro and Ultra-Structure in Microdamage Accumulation in Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; August 2015. |
2017 |
Matheny JB. Interactions Between Bone Remodeling and Microdamage in Cancellous Bone [PhD thesis]. Ithaca, NY: Cornell University; August 2017. |
2018 |
Torres AM. Fatigue Behavior of Cancellous Bone, Microdamage Accumulation, and Biologically Inspired Cellular Solids [PhD thesis]. Ithaca, NY: Cornell University; August 2018. |
2011 |
Donaldson FE. On Incorporating Bone Microstructure in Macro-Finite-Element Models [PhD thesis]. Edinburgh, UK: University of Edinburgh; March 2011. |
2016 |
Florencio FL. Multiscale Modelling of Trabecular Bone: From Micro to Macroscale [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2016. |
2007 |
Voide R. Functional Phenotyping of Bone: A Hierarchical Assessment of Bone Failure Characteristics [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2007. |
2012 |
Christen DB. Nonlinear Failure Prediction in Human Bone: A Clinical Approach Based on High Resolution Imaging [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2012. |
2014 |
Carretta R. Post-Yield Mechanics and Material Composition of Single Trabeculae: A Combined Experimental and Modelling Approach [PhD thesis]. Swiss Federal Institute of Technology Zürich; 2014. |
2011 |
O'Neal JM. The Effects of Aging and Remodeling on Bone Quality and Microdamage [PhD thesis]. Atlanta, GA: Georgia Institute of Technology; August 2011. |
2019 |
Groetsch A. Micro- and Nanomechanics of Mineralised Collagen Fibre Elasto-Plasticity [PhD thesis]. Ebinburgh, Scotland: Heriot-Watt University; November 2019. |
2013 |
Newell N. Foot and Ankle Blast Injury and Its Mitigation [PhD thesis]. Imperial College London; June 2013. |
2015 |
Rodriguez-Florez N. Mechanics of Cortical Bone: Exploring the Micro- and Nano-Scale [PhD thesis]. Imperial College London; January 2015. |
2011 |
Abdel-Wahab AA-GM. Experimental and Numerical Analysis of Deformation and Fracture of Cortical Bone Tissue [PhD thesis]. Loughborough University; August 2011. |
2013 |
Li S. Cutting of Cortical Bone Tissue: Analysis of Deformation and Fracture Process [PhD thesis]. Loughborough University; June 2013. |
28 |
Wang M. Effect of Osteonal Microstructure on Crack Propagation: A Computational Study [PhD thesis]. Loughborough University; October 28. |
2019 |
Gustafsson A. The Role of Microstructure for Crack Propagation in Cortical Bone [PhD thesis]. Lund, Sweden: Lund University; December 2019. |
2014 |
Jameson JR. Characterization of Bone Material Properties and Microstructure in Osteogenesis Imperfecta/brittle Bone Disease [PhD thesis]. Marquette University; December 2014. |
2007 |
Tai K. Nanomechanics and Ultrastructural Studies of Cortical Bone: Fundamental Insights Regarding Structure-Function, Mineral-Organic Force Mechanics Interactions, and Heterogeneity [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2007. |
2019 |
Ghiasi MS. Mechanobiological Modeling on Bone Fracture Healing [PhD thesis]. Northeastern University; December 2019. |
2019 |
Nobakhti S. Multiscale Characteristics of Bone Toughness [PhD thesis]. Northeastern University; July 2019. |
2004 |
Wang X. Measurement and Analysis of Microdamage in Bone [PhD thesis]. University of Notre Dame; December 2004. |
2006 |
Leng H. Micro-Computed Tomography of Microdamage in Cortical Bone [PhD thesis]. University of Notre Dame; May 2006. |
2016 |
Hunckler MD. Investigation of a Rabbit Ulnar Loading Model for Atypical Fractures in Cortical Bone During Long-Term Bisphosphonate Treatment [Master's thesis]. University of Notre Dame; December 2016. |
2012 |
Sun X. Mechanically Induced Calcium Efflux from Bone Matrix Stimulates Osteoblasts [PhD thesis]. Purdue University; May 2012. |
2013 |
Morton JJ. An Investigation of Rat Vertebra Failure Behaviour Under Uniaxial Compression Through Time-Lapsed Micro-CT Imaging [Master's thesis]. Queen's University; 2013. |
2005 |
George WT. Multiaxial Fracture Characteristics of Aging Human Bone [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; April 2005. |
2006 |
Diab T. The Role of Damage Morphology in Age-Related Increase in Bone Fragility [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; 2006. |
2013 |
Poundarik A. The Role of Non-Collagenous Proteins, in Particular, Osteocalcin and Osteopontin, in the Determination of Bone Matrix Quality [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; May 2013. |
2016 |
Bailey SM. The Role of Extra-Cellular Matrix Proteins and Post-Translational Modifications on Bone Fracture [PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; September 2016. |
2009 |
Ruppel ME. Alterations in the Mineral and Collagen Matrix of Bisphosphonate-Treated Bone and Osteoblasts [PhD thesis]. Stony Brook, NY: Stony Brook University; May 2009. |
2011 |
Lin L. Simulation and in Vitro Studies of Transverse Ultrasound Attenuation in Cortical Bone [Master's thesis]. Stony Brook, NY: Stony Brook University; May 2011. |
2020 |
Stipsitz M. Development of a Nonlinear Micro Finite Element Framework for Image-Based Simulations in Bone Biomechanics [PhD thesis]. Vienna University of Technology; 2020. |
2020 |
Salem M. Investigation of Pelvic Bone Fracture Mechanism and Simulated Treatment [PhD thesis]. Edmonton, AB: University of Alberta; 2020. |
2011 |
Ebacher V. Experimental Study of Deformation and Microcracking in Human Cortical Bone [PhD thesis]. Vancouver, BC: University of British Columbia; May 2011. |
2018 |
Tang T. Fracture Mechanisms and Structural Fragility of Human Femoral Cortical Bone [PhD thesis]. Vancouver, BC: University of British Columbia; April 2018. |
2014 |
Colombo A. La micro-architecture de l’os trabéculaire en croissance: Variabilité tridimensionnelle normale et pathologique analysée par microtomodensitométrie [PhD thesis]. Université de Bordeaux; December 15, 2014. |
2016 |
Firminger CR. Effects of Minimalist Footwear and Stride Length Reduction on Metatarsal Strains and the Probability of Stress Fracture in Running [Master's thesis]. Calgary, AB: University of Calgary; July 2016. |
2017 |
Fung A. Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal [Master's thesis]. Calgary, AB: University of Calgary; April 2017. |
2020 |
Loundagin LL. The Influence of Intracortical Microarchitecture on the Mechanical Fatigue of Bone [PhD thesis]. Calgary, AB: University of Calgary; July 2020. |
2023 |
Koshyk A. Influence of Microarchitecture on the Mechanical Fatigue Behaviour of Equine Subchondral Bone [Master's thesis]. Calgary, AB: University of Calgary; September 2023. |
2011 |
Barth HD. A Hierarchical Approach to Characterizing the Fracture Behavior of Bone Utilizing Synchrotron Radiation [PhD thesis]. Berkeley, CA: Berkeley, University of California; F 2011. |
2011 |
Zimmermann EA. Deformation and Fracture of Human Cortical Bone Across Multiple Length-Scales [PhD thesis]. Berkeley, CA: Berkeley, University of California; F 2011. |
2018 |
Pendleton MM. Effects of Spaceflight- and Clinically-Relevant Ionizing Radiation Exposure on Bone Biomechanics [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2018. |
2008 |
Creel JA. Influence of Crack Propagation Orientation on R-Curve Fracture Mechanics of Equine Cortical Bone [PhD thesis]. Davis, University of California; 2008. |
2012 |
Hardisty MR. Not Tough Enough: Why Bone Turns Pale When it Feels Stressed [PhD thesis]. Davis, CA: Davis, University of California; 2012. |
2010 |
Kulin RM. On the Dynamic Behavior of Mineralized Tissues [PhD thesis]. San Diego (UCSD), University of California; 2010. |
2019 |
Jung J-Y. Learning from Nature: An Investigation of an Impact-Resistant System on the Woodpecker Head as a Non-Traumatic Brain Injury Animal Model [PhD thesis]. San Siego, CA: University of California San Diego; 2019. |
2005 |
Yan J. Elastic-Plastic Fracture Mechanics of Compact Bone [PhD thesis]. University of Florida; 2005. |
2022 |
Rezaee T. Effect of Clinically Relevant Alterations of Mineral and Protein on Bone Biomechanics [PhD thesis]. University of Massachusetts at Dartmouth; May 2022. |
2009 |
Sahar ND. Investigating the Effects of Age and Exercise on Bone Composition and the Impact of Composition on Mechanical Integrity. [PhD thesis]. University of Michigan; 2009. |
2014 |
Schwiedrzik JJ. Experimental, Theoretical and Numerical Investigation of the Nonlinear Micromechanical Properties of Bone [PhD thesis]. Universität Bern; 2014. |
2016 |
Arango Villegas C. Study of the Mechanical Behavior of Cortical Bone Microstructure by the Finite Element Method [PhD thesis]. Universität Politècnica de València; May 2016. |
2020 |
Belda González R. Mechanical and Morphometric Characterization of Cancellous Bone [PhD thesis]. Universität Politècnica de València; March 2020. |
2022 |
Snow TJ. An Investigation of the Role of Collagen Network on the Dynamic Fracture Initiation Toughness of Bovine Cortical Bone [Master's thesis]. University of Utah; December 2022. |
2020 |
Singleton RC. A Study of Aging in Male Cortical Bone Using Nanoindentation [PhD thesis]. Knoxville, University of Tennessee; August 2020. |
2010 |
Wynnyckyj C. The Consequences of Collagen Degradation on Bone Mechanical Properties [PhD thesis]. University of Toronto; 2010. |
2012 |
Maloul A. Biomechanical Characterization of Complex Thin Bone Structures in the Human Craniofacial Skeleton [PhD thesis]. University of Toronto; 2012. |
2015 |
Tong H-K. Quantification of Vertebral Trabecular Bone Strain Via Feature Based Image Registration [Master's thesis]. University of Toronto; November 2015. |
2011 |
Islam A. Mechanistic Model of Nanoscratch Test to Determine the in Situ Toughness of Bone [Master's thesis]. San Antionio, TX: University of Texas at San Antonio; May 2011. |
2019 |
Yue N. A Numerical Investigation of Biomechanical Response and Injury of Occupant Lower Extremities in Automotive Frontal Impact Scenario [Master's thesis]. Charlottesville, VA: University of Virginia; December 2019. |
2018 |
Dapaah DY. An Experimentally Validated Continuum Damage Mechanics Model of the Micro-Damage Process Zone During Cortical Bone Fracture [Master's thesis]. University of Waterloo; 2018. |
2018 |
Khor F. Computational Modeling of Hard Tissue Response and Fracture in the Lower Cervical Spine Under Compression Including Age Effects [Master's thesis]. University of Waterloo; 2018. |
2020 |
Correia MA. Optimization of Neck Musculature Activation for Head Kinematics in Frontal, Lateral and Rear Impact Simulations [Master's thesis]. University of Waterloo; 2020. |
2022 |
Martel DR. Contributors to Proximal Femur Fracture Force: Multiscale Considerations of Rate, Toughness, and Bone Composition [PhD thesis]. University of Waterloo; 2022. |
2014 |
Makowski AJ. Evaluation of Raman Spectroscopy for Fracture Resistance Assessment [PhD thesis]. Nashville, TN: Vanderbilt University; December 2014. |
2019 |
Demirtas A. Assessment of the Influence of Possible Side Effects of Long-Term Bisphosphonate Treatment on Cortical Bone Fracture Resistance Using Finite Element Modeling [PhD thesis]. Villanova, PA: Villanova University; July 2019. |
2003 |
Stitzel JD. The Role of Local Material Properties in Modeling Fracture Tolerance of the Human Thorax [PhD thesis]. Virginia Polytechnic Institute and State University; September 19, 2003. |