The nanoscale deformation and fracture mechanisms of parallel fibered bone are investigated using a novel combination of in-situ tensile testing to failure combined with high brilliance synchrotron X-ray scattering. The technique enables the simultaneous measurement of strain at two length scales – in the mineralized collagen fibrils (~100 nm diameter) along with the macroscopic strain (~1 mm diameter). Under constant rate tensile loading, we find that fibril strain saturates beyond the macroscopic yield point of bone at ~0.5 %, providing a correlation between the failure mechanisms at the nanoscale and the bulk structural properties. When bone stretched beyond the yield point is unloaded back to zero stress, the fibrils are contracted relative to their original state. We examine the findings in the context of a fiber – matrix shearing model at the nanometer level.
Keywords:
Bone; collagen fibril; apatite mineral; deformation mechanisms; in-situ tensile testing; synchrotron small angle X-ray scattering; fiber-matrix model