wbldb
home
|
authors
|
theses
Schwen, Lars Ole
Composite Finite Elements for Trabecular Bone Microstructures
[PhD thesis].
Bonn, Germany: Rheinische Friedrich-Wilhelms-Universität Bonn
Rumpf, Martin (supervisor)
July 2010
Cited Works (63)
Year
Entry
1985
Gibson LJ. The mechanical behaviour of cancellous bone.
J Biomech
. 1985;18(5):317-328.
1997
Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F. Age variations in the properties of human tibial trabecular bone.
J Bone Joint Surg
. November 1997;79B(6):995-1002.
2004
Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. The modified super-ellipsoid yield criterion for human trabecular bone.
J Biomech Eng
. 2004;126(6):677-684.
2005
Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe.
Osteoporos Int
. March 2005;16(3):229-238.
1997
Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.
Bone
. 1997;21(2):191-199.
1984
Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor.
J Mater Sci
. March 1984;19(3):761-767.
1973
Pugh JW, Rose RM, Radin EL. A structural model for the mechanical behavior of trabecular bone.
J Biomech
. 1973;6(6):657-670.
2003
Kowalczyk P. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
J Biomech
. July 2003;36(7):961-972.
1998
Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research.
Endocrinology
. February 1998;139(2):663-670.
2010
Wolfram U, Wilke H-J, Zysset PK. Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level.
Bone
. February 2010;46(2):348-354.
2001
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone.
Annu Rev Biomed Eng
. 2001;3:307-333.
1998
Link TM, Majumdar S, Lin JC, Newitt D, Augat P, Ouyang X, Mathur A, Genant HK. A comparative study of trabecular bone properties in the spine and femur using high resolution mri and ct.
J Bone Miner Res
. January 1998;13(1):122-132.
2002
Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone.
J Orthop Res
. July 2002;20(4):801-805.
1997
Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body.
Spine
. January 1997;22(2):140-150.
1994
Müller R, Hildebrand T, Rüegsegger P. Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone.
Phys Med Biol
. January 1994;39(1):145-164.
1997
Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R. Fabric and elastic principal directions of cancellous bone are closely related.
J Biomech
. 1997;30(5):487-495.
1991
Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis.
Radiology
. June 1991;179(3):669-674.
1997
Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture.
Spine
. December 15, 1997;22(24)(suppl):25S-31S.
1999
Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing.
Bone
. December 1999;25(6):713-724.
2002
Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation.
Bone
. February 2002;30(2):404-411.
2001
Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R. Ostehoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution.
Spine
. July 2001;26(14):1555-1560.
2006
Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Müller R. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light.
Bone
. August 2006;39(2):289-299.
1998
Ladd AJC, Kinney JH, Haupt DL, Goldstein SA. Finite‐element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus.
J Orthop Res
. September 1998;16(5):622-628.
1998
Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations.
Med Eng Phys
. March 1998;20(2):124-131.
2002
Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinz L, Claes L, Augat P. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro.
Bone
. July 2002;31(1):90-95.
2004
Ketcham RA, Ryan TM. Quantification and visualization of anisotropy in trabecular bone.
J Microsc
(Oxford). February 2004;213(2):158-171.
2000
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone.
J Biomech
. December 2000;33(12):1575-1583.
2005
Gibson LJ. Biomechanics of cellular solids.
J Biomech
. 2005;38(3):377-399.
1992
Cruz-Orive LM, Karlsson LM, Larsen SE, Wainschtein F. Characterizing anisotropy: a new concept.
Micron Microsc Acta
. 1992;23(1-2):75-76.
1996
Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell.
J Bone Miner Res
. September 1996;11(9):1356-1363.
1988
Harrigan TP, Jasty M, Mann RW, Harris WH. Limitations of the continuum assumption in cancellous bone.
J Biomech
. 1988;21(4):269-275.
1999
Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR; Study of Osteoporotic Fractures Research Group. Vertebral fractures and mortality in older women: a prospective study.
Arch Intern Med
. June 14, 1999;159(11):1215-1220.
2003
Van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P. Trabecular bone tissue strains in the healthy and osteoporotic human femur.
J Bone Miner Res
. October 2003;18(10):1781-1788.
1997
Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images.
J Microsc
(Oxford). 1997;185(1):67-75.
2006
Ün K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus of trabecular bone.
J Biomech
. 2006;39(11):1955-1963.
1998
Ladd AJC, Kinney JH. Numerical errors and uncertainties in finite-element modeling of trabecular bone.
J Biomech
. October 1998;31(10):941-945.
2002
Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
Osteoporos Int
. January 2002;13(1):6-17.
1997
Melton LJ III, Thamer M, Ray NF, Chan JK, Chesnut CH III, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, Siris ES. Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation.
J Bone Miner Res
. January 1997;12(1):16-23.
1998
Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling.
J Biomech
. February 1998;31(2):125-133.
1991
Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. Application of homogenization theory to the study of trabecular bone mechanics.
J Biomech
. 1991;24(9):825-839.
1992
Hollister SJ, Kikuchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites.
Comput Mech
. March 1992;10(2):73-95.
1978
Ridler TW, Calvard S. Picture thresholding using an iterative selection method.
IEEE Trans Sys Man Cyb
. 1978;8(8):630-632.
1994
Hollister SJ, Brennan JM, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stres.
J Biomech
. 1994;27(4):433-444.
1999
Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus.
J Bone Miner Res
. July 1999;14(7):1167-1174.
1999
Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
J Biomech
. 1999;32(7):673-680.
2001
van der Linden JC, Homminga J, Verhaar JAN, Weinans H. Mechanical consequences of bone loss in cancellous bone.
J Bone Miner Res
. March 2001;16(3):457-465.
2006
Boyd SK, Müller R. Smooth surface meshing for automated finite element model generation from 3D image data.
J Biomech
. 2006;39(7):1287-1295.
1995
van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models.
J Biomech
. January 1995;28(1):69-81.
1996
Van Rietbergen B, Weinans H, Huiskes R, Polman BJW. Computational strategies for iterative solutions of large FEM applications employing voxel data.
Int J Num Meth Eng
. August 30, 1996;39(16):2743-2767.
1987
Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm.
Comput Graph
. 1987;21(4):163-169.
1995
McCubbrey DA, Cody DD, Peterson EL, Kuhn JL, Flynn MJ, Goldstein SA. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density.
J Biomech
. August 1995;28(8):891-899.
1998
Goel VK, Clausen JD. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.
Spine
. March 15, 1998;23(6):684-691.
2001
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site.
J Biomech
. 2001;34(5):569-577.
1998
Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
Bone
. May 1998;22(5):445-454.
1999
Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
J Biomech
. February 1999;32(2):165-173.
1997
Rho J-Y, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation.
Biomaterials
. 1997;18(20):1325-1330.
2004
Bourne BC, van der Meulen MCH. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
J Biomech
. May 2004;37(5):613-621.
2007
Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
J Biomech
. 2007;40(15):3333-3340.
1998
Smit TH, Schneider E, Odgaard A. Star length distribution: a volume-based concept for the characterization of structural anisotropy.
J Microsc
(Oxford). September 1998;191(3):249-257.
2005
Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains.
Euro J Morphol
. February–April 2005;42(1-2):13-21.
1999
Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study.
Bone
. August 1999;25(2):223-228.
1993
Pal N, Pal S. A review on image segmentation techniques.
Pattern Recognit
. 1993;23(9):1277-1294.
1996
van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture.
J Biomech
. December 1996;29(12):1653-1657.
Cited By (1)
Year
Entry
2020
Huang Z, Nie Y, Li Y. Microstructural modeling and multiscale mechanical properties analysis of cancellous bone.
CMC-Comput Mater Con
. 2020;62(1):245-265.