wbldb
home
|
authors
|
theses
Piekarski, K.
1
;
Munro, M.
2
Transport mechanism operating between blood supply and osteocytes in long bones
Nature
. September 1, 1977;270(5623):80-82
©1977 Nature Publishing Group
Affiliations
1
University of Waterloo
, Department of Mechanical Engineering, Waterloo, ontario, Canada N2L 3G1
2
University of Cambridge
, Engineering Department, Trumpington Road, Cambridge, UK
Links
DOI:
10.1038/269080a0
PubMed:
895891
WoS:
A1977DS90100052
History
Received: 1977-03-07
Accepted: 1977-06-13
Cited Works (1)
Year
Entry
1965
Ascenzi A, Bonucci E, Bocciarelli DS. An electron microscope study of osteon calcification.
J Ultrastruct Res
. April 1965;12(3-4):287-303.
Cited By (124)
Year
Entry
1981
Piekarski K. Mechanically enhanced perfusion of bone. In: Cowin SC, ed.
Mechanical Properties of Bone
. The Joint ASME-ASCE Applied Mechnics, Fluids Engineering and Bioengineering Conference; June 22-24, 1981; Boulder, CO. New York, NY: American Society of Mechical Engineers; 1981:185-191.
2001
Knothe Tate ML. Bone poroelasticity. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:22-1–22-29.
2001
Cowin SC. Bone poroelasticity. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:23-1–23-31.
2001
Pollack SR. Streaming potentials in bone. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:24-1–24-22.
2001
Burger EH. Experiments on cell mechanosensitivity: bone cells as mechanical engineers. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:28-1–28-16.
2001
Cowin SC, Moss ML. Mechanosensory mechanisms in bone. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:29-1–29-17.
1998
Knothe Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation.
Am J Med Sci
. September 1998;316(3):189-195.
2009
McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix.
Anat Rec
. March 2009;292(3):355-363.
2004
You L, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix.
Anat Rec
. June 2004;278A(2):505-513.
1994
Zeng Y, Cowin SC, Weinbaum S. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
Ann Biomed Eng
. May–June 1994;22(3):280-292.
2000
Wang L, Cowin SC, Weinbaum S, Fritton SP. Modeling tracer transport in an osteon under cyclic loading.
Ann Biomed Eng
. October 2000;28(10):1200-1209.
2002
Qin Y-X, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements.
Ann Biomed Eng
. May 2002;30(5):693-702.
2008
Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review.
Ann Biomed Eng
. December 2008;36(12):1978-1991.
2010
Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics.
Annu Rev Biomed Eng
. 2010;12:369-400.
2009
Fritton SP, Weinbaum S. Fluid and solute transport in bone: flow-induced mechanotransduction.
Annu Rev Fluid Mech
. 2009;41:347-374.
1995
Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide P, Burger EH. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts - correlation with prostaglandin upregulation.
Biochem Biophys Res Commun
. December 14, 1995;217(2):640-648.
1996
Ajubi NE, Klein-Nulend J, Nijweide PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes: a cytoskeleton-dependent process.
Biochem Biophys Res Commun
. August 5, 1996;225(1):62-68.
2004
Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent.
Biochem Biophys Res Commun
. March 19, 2004;315(4):823-829.
2006
Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation.
Biochem Biophys Res Commun
. September 29, 2006;348(3):1082-1088.
2021
Smit TH. Closing the osteon: do osteocytes sense strain rate rather than fluid flow?
BioEssays
. August 2021;43(8):2000327.
2015
Florencio-Silva R, Sasso GRdS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells.
BioMed Res Int
. 2015;2015:421746.
1994
Hillsley MV, Frangos JA. Review: bone tissue engineering: the role of interstitial fluid flow.
Biotechnol Bioeng
. March 25, 1994;43(7):573-581.
1998
Knothe Tate ML, Niederer P, Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading.
Bone
. February 1998;22(2):107-117.
2000
Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age.
Bone
. April 2000;26(4):375-380.
2004
Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone's interstitial fluid pathway in vivo.
Bone
. March 2004;34(3):499-509.
2008
Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J. Osteocyte morphology in fibula and calvaria: is there a role for mechanosensing?
Bone
. September 2008;43(3):452-458.
2012
Lu XL, Huo B, Park M, Guo XE. Calcium response in osteocytic networks under steady and oscillatory fluid flow.
Bone
. September 2012;51(3):466-473.
2013
Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes.
Bone
. June 2013;54(2):182-190.
2020
Willie BM, Zimmermann EA, Vitienes I, Main RP, Komarova SV. Bone adaptation: safety factors and load predictability in shaping skeletal form.
Bone
. February 2020;131:115114.
2020
da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context: implications for bone biology.
Bone
. August 2020;137:115416.
2023
Cunningham HC, Orr S, Murugesh DK, Hsia AW, Osipov B, Go L, Wu PH, Wong A, Loots GG, Kazakia GJ, Christiansen BA. Differential bone adaptation to mechanical unloading and reloading in young, old, and osteocyte deficient mice.
Bone
. February 2023;167:116646.
2014
Schaffler MB, Cheung W-Y, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone.
Calcif Tiss Int
. January 2014;94(1):5-24.
1995
Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro.
FASEB J
. March 1995;9(5):441-445.
1999
Burger EH, Klein-Nulend J. Mechanotransduction in bone: role of the lacunocanalicular network.
FASEB J
. May 1999;12(9001):S101-S112.
2006
Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone.
Gene
. February 15, 2006;367:1-16.
2012
Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone.
Gene
. July 25, 2012;503(2):179-193.
2001
You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3–E1 osteoblasts.
J Biol Chem
. April 20, 2001;276(16):13365-13371.
1982
Johnson MW, Chakkalakal DA, Harper RA, Katz JL, Rouhana SW. Fluid flow in bone in vitro.
J Biomech
. 1982;15(11):881-885.
1984
Pollack SR, Petrov N, Salzstein R, Brankov G, Blagoeva R. An anatomical model for streaming potentials in osteons.
J Biomech
. 1984;17(8):627-636.
1990
Kufahl RH, Saha S. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue.
J Biomech
. 1990;23(2):171-180.
1994
Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
J Biomech
. March 1994;27(3):339-360.
1995
Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials.
J Biomech
. November 1995;28(11):1281-1297.
1998
Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ. Differential effect of steady versus oscillating flow on bone cells.
J Biomech
. November 1998;31(11):969-976.
1999
Cowin SC. Bone poroelasticity.
J Biomech
. March 1999;32(3):217-238.
1999
Wang L, Fritton SP, Cowin SC, Weinbaum S. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.
J Biomech
. July 1999;32(7):663-672.
2000
Knothe Tate M, Knothe U. An ex vivo model to study transport processes and fluid flow in loaded bone.
J Biomech
. February 2000;33(2):247-254.
2001
Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E₂ by primary bone cells is shear stress dependent.
J Biomech
. May 2001;34(5):671-677.
2001
You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix.
J Biomech
. November 2001;34(11):1375-1386.
2002
Smit TH, Huyghe JM, Cowin SC. Estimation of the poroelastic parameters of cortical bone.
J Biomech
. June 2002;35(6):829-835.
2003
Knothe Tate ML. “Whither flows the fluid in bone?” an osteocyte's perspective.
J Biomech
. October 2003;36(10):1409-1424.
2003
Qin Y-X, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity.
J Biomech
. October 2003;36(10):1427-1437.
2010
Chen J-H, Liu C, You L, Simmons CA. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone.
J Biomech
. January 5, 2010;43(1):108-118.
2011
Golden KM, Murphy NB, Cherkaev E. Spectral analysis and connectivity of porous microstructures in bone.
J Biomech
. 2011;44(2):337-344.
2018
Gatti V, Azoulay EM, Fritton SP. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
J Biomech
. January 3, 2018;66:127-136.
1991
Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone.
J Biomech Eng
. May 1991;113(2):191-197.
2000
Garner E, Lakes R, Lee T, Swan C, Brand R. Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone.
J Biomech Eng
. April 2000;122(2):166-172.
1997
Klein‐Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin g/h synthase mrna expression in primary mouse bone cells.
J Bone Miner Res
. January 1997;12(1):45-51.
1999
McAllister TN, Frangos JA. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways.
J Bone Miner Res
. June 1999;14(6):930-936.
2002
Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low‐magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.
J Bone Miner Res
. September 2002;17(9):1613-1620.
2002
Tami AE, Nasser P, Verborgt O, Schaffler MB, Knothe Tate ML. The role of interstitial fluid flow in the remodeling response to fatigue loading.
J Bone Miner Res
. November 2002;17(11):2030-2037.
2011
Price C, Zhou X, Li W, Wang L. Real‐time measurement of solute transport within the lacunar‐canalicular system of mechanically loaded bone: direct evidence for load‐induced fluid flow.
J Bone Miner Res
. February 2011;26(2):277-285.
2011
Thompson WR, Modla S, Grindel BJ, Czymmek KJ, Kirn-Safran CB, Wang L, Duncan RL, Farach-Carson MC. Perlecan/
Hspg2
deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone.
J Bone Miner Res
. March 2011;26(3):618-629.
2012
Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow.
J Bone Miner Res
. March 2012;27(3):563-574.
2015
Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Männicke N, Suhonen H, Maurer P, Cloetens P, Peyrin F, Raum K. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT.
J Bone Miner Res
. 2015;30(2):346-356.
2016
Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, Schaffler MB. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs.
J Bone Miner Res
. July 2016;31(7):1356-1365.
1994
Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone.
J Cell Biochem
. July 1994;55(3):287-299.
2000
Knothe Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.
J Exp Biol
. September 2000;203(18):2737-2745.
2021
Palumbo C, Ferretti M. The osteocyte: from “prisoner” to “orchestrator”.
J Funct Morphol Kinesiol
. 2021;6(1):28.
1995
Burger EH, Klein-Nulend J, Van Der Plas A, Nijweide PJ. Function of osteocytes in bone: their role in mechanotransduction.
J Nutr
. July 1995;125(7)(suppl):S2020-S2023.
1983
Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid-saturated bone.
J Orthop Res
. 1983;1(1):30-41.
1992
Otter MW, Palmieri VR, Wu DD, Seiz KG, MacGinitie LA, Cochran GVB. A comparative analysis of streaming potentials in vivo and in vitro.
J Orthop Res
. September 1992;10(5):710-719.
2009
Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction.
J Orthop Res
. February 2009;27(2):143-149.
2003
Steck R, Niederer P, Knothe Tate ML. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
J Theo Biol
. January 21, 2003;220(2):249-259.
1988
Montgomery RJ, Sutker BD, Bronk JT, Smith SR, Kelly PJ. Interstitial fluid flow in cortical bone.
Microvasc Res
. May 1988;35(3):295-307.
1993
Lakes R. Materials with structural hierarchy.
Nature
. February 11, 1993;361(6412):511-515.
2005
Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB. In situ measurement of solute transport in the bone lacunar-canalicular system.
Proc Natl Acad Sci USA
. August 16, 2005;102(46):11911-11916.
2011
Miller RM.
Mechanobiological Investigation of Periosteum Through Finite Element Modeling and Histology
[Master's thesis]. Cleveland, OH: Case Western Reserve University; August 2011.
2015
Cabahug-Zuckerman P.
A Β₃ Integrin Based Mechanosome in Bone Tissue Osteocytes: Plasticity to Changes in Mechanical Loading
[PhD thesis]. New York, NY: The City College of New York; 2015.
2013
Baik AD.
Application of a Novel Quasi-3D Microscopy Technique to Investigate Early Osteocyte Mechanotransduction Events
[PhD thesis]. Columbia University; 2013.
2016
Brown GN.
The Sustainment and Consequences of Cytosolic Calcium Signals in Osteocytes
[PhD thesis]. Columbia University; 2016.
2019
Campi AE.
Mechanosensitive Ca
2+
Signaling of Ex Vivo Osteocytes in Aging and Treatment
[PhD thesis]. Columbia University; 2019.
2021
Duffy MP.
The Osteocyte Primary Cilium is a Mechanoresponsive Organelle That Regulates Cytoskeletal Adaptation and Coordinates Mechanotransduction With Adenylyl Cyclases
[PhD thesis]. Columbia University; 2021.
2004
Samuel SP.
Fluid/solid Interactions in Cancellous Bone
[PhD thesis]. Cleveland State University; August 2004.
1997
Zhang D.
Electromechanical Mechanisms of Bone Remodeling
[PhD thesis]. New York, NY: The City University of New York; 1997.
2002
Wang L.
Investigating the Role of Interstitial Fluid Flow in Bone Adaptation and Metabolism
[PhD thesis]. New York, NY: The City University of New York; 2002.
2002
You L.
A New View of Mechanotransduction in Bone Cells
[PhD thesis]. New York, NY: The City University of New York; 2002.
2004
Mi LY.
Analysis of Avian Bone Response to Mechanical Loading Using a Computational Connected Network
[PhD thesis]. New York, NY: The City College of New York; 2004.
2005
Beno T.
Investigating the Role of Microstructure in Bone Permeability
[PhD thesis]. New York, NY: The City University of New York; 2005.
2005
Yoon YJ.
Estimates of Bone Elastic Constants At Sequential Hierarchical Levels
[PhD thesis]. New York, NY: The City University of New York; 2005.
2008
Ciani C.
Characterization of Microporosities and Load-Induced Interstitial Fluid Movement in Normal and Osteopenic Bone
[PhD thesis]. New York, NY: The City University of New York; 2008.
2012
Sharma D.
Effects of Estrogen Deficiency on the Osteocyte Lacunar-Canalicular Network
[PhD thesis]. New York, NY: The City University of New York; 2012.
2013
Souzanchi MF.
The Effect of Microarchitecture and Fabric Anisotropy of Trabecular Bone on Its Mechanical Behavior
[PhD thesis]. New York, NY: The City University of New York; 2013.
2017
Gatti V.
The Effects of Skeletal Unloading on Bone Microstructure and Fluid-Mediated Osteocyte Mechanotransduction
[PhD thesis]. New York, NY: The City University of New York; 2017.
2011
Boerckel JD.
Mechanical Regulation of Bone Regeneration and Vascular Growth in Vivo
[PhD thesis]. Atlanta, GA: Georgia Institute of Technology; August 2011.
2019
Lambert C.
A Comparison of the Bone Response to Impact Loading and Resistance Training in Young Adult Women: The OPTIMA-Ex Trial
[PhD thesis]. Brisbane, Australia: Griffith University; July 2019.
2014
Ferro Pereira A.
Cortical Bone Adaptation: A Finite-Element Study of the Mouse Tibia
[PhD thesis]. Imperial College London; January 2014.
2018
Mikolajewicz N.
Purinergic Mechanotransduction in Bone
[PhD thesis]. McGill University; December 2018.
2014
Ellman R.
Skeletal Adaptation to Reduced Mechanical Loading
[PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 2014.
2019
Podlisny DR.
Effects of Poroelasticity on Mechanoadaptation in Bone
[Master's thesis]. Northeastern University; May 2019.
2021
DiMauro NCB.
Modeling Fluid Flow in Bone Mechanoadaptation
[Master's thesis]. Northeastern University; December 2021.
2011
Ross RD.
Functionalized Gold Nanoparticles as Damage-Specific X-Ray Computed Tomography Contrast Agents in Bone Tissue
[PhD thesis]. University of Notre Dame; November 2011.
2015
Coughlin TR.
Mechanobiological Signals in Trabecular Bone and Marrow
[PhD thesis]. University of Notre Dame; July 2015.
2013
Verbruggen SW.
Mechanobiological Origins of Osteoporosis
[PhD thesis]. National University of Ireland Galway; September 2013.
2020
Simfia I.
Estrogen Deficiency Alters the Mechanobiological Responses of Osteoblasts and Osteocytes
[PhD thesis]. National University of Ireland Galway; April 2020.
2010
Gurkan UA.
Engineering of Bone Marrow in Vitro for Investigating the Role of Growth Factors and Their Mechanoresponsiveness in Osteogenesis
[PhD thesis]. Purdue University; May 2010.
2012
Sun X.
Mechanically Induced Calcium Efflux from Bone Matrix Stimulates Osteoblasts
[PhD thesis]. Purdue University; May 2012.
1983
Rouhana SW.
Fluid Flow and Mechanical Damping in Bovine Cortical Bone
[PhD thesis]. Troy, NY: Rensselaer Polytechnic Institute; February 1983.
2007
Malone AMD.
Mechanotransduction Mechanisms in Bone Cells
[PhD thesis]. Stanford University; August 2007.
2008
Kwon RY.
Mechanical Behavior and Early Molecular Signaling During Mechanotransduction of Fluid Flow in Bone Cells
[PhD thesis]. Stanford University; August 2008.
1997
Qin Y-X.
Fluid Flow, Matrix Strain and Loading Frequency as Interdependent Control Parameters in Skeletal Adaptation
[PhD thesis]. Stony Brook, NY: State University of New York at Stony Brook; May 1997.
2003
Verborgt O.
Osteocyte Apoptosis and Bone Remodeling
[PhD thesis]. University of Antwerp; 2003.
2011
Ebacher V.
Experimental Study of Deformation and Microcracking in Human Cortical Bone
[PhD thesis]. Vancouver, BC: University of British Columbia; May 2011.
2004
LaMothe JM.
Functional Adaptation of Bone
[PhD thesis]. Calgary, AB: University of Calgary; September 2004.
2010
Manske SL.
Muscle Disuse and Vibration Effects on Bone Morphology
[PhD thesis]. Calgary, AB: University of Calgary; December 2010.
2000
Nauman EA.
The Analytical Design of a Hybrid Bone Substitute
[PhD thesis]. Berkeley, CA: Berkeley, University of California; Spring 2000.
2021
Cunningham HC.
Bone Adaptation to Disuse in Aging Rodents: Age-Related Differences in Response to Mechanical Unloading and Subsequent Reloading
[PhD thesis]. Davis, University of California; 2021.
2010
Thompson WR.
Perlecan Modulates the Function of the Osteocyte Lacuno-Canalicular System
[PhD thesis]. University of Delaware; 2010.
2020
Pei S.
Osteocyte Mechanosensing: Interstitial Fluid Flow, Cellular Response, and Turnover of Pericellular Matrix
[PhD thesis]. University of Delaware; 2020.
1996
Adams DJ.
Mechanical Factors Initiating Appositional Bone Formation
[PhD thesis]. University of Iowa; May 1996.
2009
Guo D.
Identification and Characterization of Osteocyte-Selective Proteins
[PhD thesis]. University of Missouri–Kansas City; 2009.
1996
Beck BR.
The Relationship of Streaming Potential Magnitude to Strain and Periosteal Modeling
[PhD thesis]. Eugene, OR: University of Oregon; December 1996.
1998
Arslanoğlu R.
Mathematical Modeling and Experimental Aspects of Cellular Mechanotransduction
[PhD thesis]. University of Texas at Austin; December 1998.
2001
Lee T.
Viscoelastic Properties of Biological and High-Damping Composite Materials
[PhD thesis]. University of Wisconsin – Madison; 2001.
2001
Li B.
Mechanotransduction in Bone: Passive and Load-Induced Fluid Transport in Rat Femora
[Master's thesis]. West Virginia University; 2001.