A method to completely demineralize and deproteinize bone was used to investigate the mechanical properties of either the mineral or protein phase in cancellous bone and compared to an untreated one. Compression tests on cancellous bovine femur and elk antler (Cervus elaphus canadensis) were performed on demineralized, deproteinized, and untreated samples in an air-dry condition. Results showed that the elastic modulus and compressive strength of the demineralized (protein only) and deproteinized (mineral only) samples were far lower than that of the untreated ones, indicating a strong synergetic effect between the two phases. Experimental data showed that the demineralized, deproteinized, and untreated samples can be modeled as cellular solids, with the strong dependence of mechanical properties on the relative density. Deformed samples were examined under SEM and different failure mechanisms were observed. Plastic buckling was observed in demineralized samples while brittle crushing was found in deproteinized ones.
Keywords:
Cancellous bone; Cellular solids; Composite; Mechanical properties; Demineralization; Deproteinization