Creep and fatigue tests were performed on human femoral cortical bone and the results were compared to a cumulative damage model for bone fracture. Fatigue tests in tension, compression, and reversed loading with a tensile mean stress were conducted at 2 Hz and 0.02 Hz. Load frequency had a strong influence on the number of cycles to failure but did not influence the total time to failure. Bone displayed poor creep-fracture properties in both tension and compression. The fracture surfaces of the tensile creep specimens are distinctly different than those of the compressive specimens. The results suggest that tensile cyclic loading creates primarily time-dependent damage and compressive cyclic loading creates primarily cycle-dependent damage. However, data for load histories involving both tensile and compressive loading indicate lower time to failure than predicted by a simple summation of time-dependent and cycle-dependent damage.