2010 |
Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tiss Int. November 2010;87(5):450-460. |
2010 |
Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. October 2010;9(5):499-510. |
1999 |
Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. October 1999;32(10):1005-1012. |
2008 |
MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. June 2008;42(6):1203-1213. |
2020 |
Razi H, Predan J, Fischer FD, Kolednik O, Fratzl P. Damage tolerance of lamellar bone. Bone. January 2020;130:115102. |
2009 |
Ritchie R, Buehler M, Hansma P. Plasticity and toughness in bone. Phys Today. June 2009;62(6):41-47. |
1959 |
Currey JD. Differences in the tensile strength of bone of different histological types. J Anat. January 1959;93(1):87-95. |
1995 |
Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. May 1995;16(5):533-544. |
2004 |
Currey JD. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech. April 2004;37(4):549-556. |
1997 |
Braidotti P, Branca FP, Stagni L. Scanning electron microscopy of human cortical bone failure surfaces. J Biomech. February 1997;30(2):155-162. |
1964 |
Hashin Z, Rosen BW. The elastic moduli of fiber-reinforced materials. J Appl Mech. June 1964;31(2):223-232. |
1963 |
Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids. March–April 1963;11(2):127-140. |
1997 |
Jepsen KJ, Davy DT. Comparison of damage accumulation measures in human cortical bone. J Biomech. September 1997;30(9):891-894. |
2010 |
Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47. |
1975 |
Townsend PR, Rose RM, Radin EL. Buckling studies of single human trabeculae. J Biomech. July 1975;8(3-4):199-200. |
2009 |
Espinosa HD, Rim JE, Barthelat F, Buehler MJ. Merger of structure and material in nacre and bone: perspectives on de novo biomimetic materials. Prog Mater Sci. November 2009;54(8):1059-1100. |
1964 |
Gong JK, Arnold JS, Cohn SH. Composition of trabecular and cortical bone. Anat Rec. 1964;149(3):325-331. |
2003 |
Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone. March 2003;32(3):270-282. |
1994 |
Crofts RD, Boyce TM, Bloebaum RD. Aging changes in osteon mineralization in the human femoral neck. Bone. March–April 1994;15(2):147-152. |
1984 |
Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17(5):349-361. |
2005 |
Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res. 2005;20(4):625-634. |
2014 |
Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. September 2014;10(8):3815-3826. |
1996 |
Prendergast PJ, Huiskes R. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. J Biomech Eng. May 1996;118(2):240-246. |
1998 |
Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1998;122(1-2):119-122. |
2013 |
Feerick EM, Liu X, McGarry P. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). J Mech Behav Biomed Mater. April 2013;20:77-89. |
1995 |
Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. December 1995;17(6):521-525. |
2000 |
Sevostianov I, Kachanov M. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech. July 2000;33(7):881-888. |
2005 |
Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM. The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone. July 2005;37(1):10-15. |
2004 |
Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14(14):2115-2123. |
2007 |
Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. November 2007;52(8):1263-1334. |
2006 |
Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. September 2006;35(suppl 2):ii27-ii31. |
2011 |
Shen ZL, Kahn H, Ballarini R, Eppell SJ. Viscoelastic properties of isolated collagen fibrils. Biophys J. June 22, 2011;100(12):3008-3015. |
1989 |
Mente PL, Lewis JL. Experimental method for the measurement of the elastic modulus of trabecular bone tissue. J Orthop Res. 1989;7(3):456-461. |
1993 |
Sasaki N, Nakayama Y, Yoshikawa M, Enyo A. Stress relaxation function of bone and bone collagen. J Biomech. December 1993;26(12):1369-1376. |
2013 |
Reznikov N, Almany-Magal R, Shahar R, Weiner S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone. February 2013;52(2):676-683. |
1999 |
Fondrk MT, Bahniuk EH, Davy DT. A damage model for nonlinear tensile behavior of cortical bone. J Biomech Eng. October 1999;121(5):533-541. |
1976 |
Yoon HS, Katz JL. Ultrasonic wave propagation in human cortical bone, II: measurements of elastic properties and microhardness. J Biomech. 1976;9(7):459-464. |
1971 |
Wood JL. Dynamic response of human cranial bone. J Biomech. January 1971;4(1):1-12. |
1996 |
Courtney AC, Hayes WC, Gibson LJ. Age-related differences in post-yield damage in human cortical bone: experiment and model. J Biomech. November 1996;29(11):1463-1471. |
1998 |
Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. January 1998;22(1):57-66. |
1976 |
Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg. 1976;58A(1):82-86. |
2001 |
Cowin SC, ed. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001. |
1990 |
Ascenzi A, Baschieri P, Benvenuti A. The bending properties of single osteons. J Biomech. 1990;23(8):763-771. |
2005 |
Akkus O. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model. J Biomech Eng. June 2005;127(3):383-390. |
2002 |
Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res. July 2002;20(4):806-810. |
1969 |
Currey JD. The relationship between the stiffness and the mineral content of bone. J Biomech. October 1969;2(4):477-480. |
1993 |
Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. March–April 1993;14(2):103-109. |
2008 |
Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. September 2008;42(4):579-591. |
1997 |
Rho J-Y, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18(20):1325-1330. |
2001 |
Rho JY, Currey JD, Zioupos P, Pharr GM. The anisotropic Young's modulus of equine secondary osteones and interstitial bone determined by nanoindentation. J Exp Biol. May 2001;204(10):1775-1781. |
1973 |
Piekarski K. Analysis of bone as a composite material. Int J Eng Sci. June 1973;11(6):557-565. |
1989 |
Caler WE, Carter DR. Bone creep-fatigue damage accumulation. J Biomech. 1989;22(6-7):625-635. |
2007 |
Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P. Raman imaging of two orthogonal planes within cortical bone. Bone. September 2007;41(3):456-461. |
2006 |
Buehler MJ. Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. J Mater Res. August 2006;21(8):1947-1961. |
2009 |
Ebacher V, Wang R. A unique microcracking process associated with the inelastic deformation of Haversian bone. Adv Funct Mater. January 9, 2009;19(1):57-66. |
1999 |
Rho JY, Zioupos P, Currey JD, Pharr GM. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone. September 1999;25(3):295-300. |
1999 |
Rho J-Y, Pharr GM. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med. 1999;10(8):485-488. |
2012 |
Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. June 2012;10(2):141-150. |
2002 |
Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinz L, Claes L, Augat P. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone. July 2002;31(1):90-95. |
2000 |
Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA. Age, gender, and bone lamellae elastic moduli. J Orthop Res. May 2000;18(3):432-437. |
1997 |
Vashishth D, Behiri JC, Bonfield W. Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech. August 1997;30(8):763-769. |
2006 |
Diab T, Condo KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. March 2006;38(3):427-431. |
2005 |
Diab T, Vashishth D. Effects of damage morphology on cortical bone fragility. Bone. July 2005;37(1):96-102. |
1988 |
Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tiss Int. May 1988;42(3):167-180. |
1981 |
Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand. 1981;52(5):481-490. |
1984 |
Currey JD. Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B Biol Sci. February 13, 1984;304(1121):509-518. |
2008 |
Yoon YJ, Cowin SC. The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol. February 2008;7(1):1-11. |
1996 |
Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech. April 1996;29(4):525-535. |
2011 |
Luo Q, Nakade R, Dong X, Rong Q, Wang X. Effect of mineral–collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model. J Mech Behav Biomed Mater. October 2011;4(7):943-952. |
1999 |
Rho J-Y, Roy ME II, Tsui TY, Pharr GM. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res. 1999;A45(1):48-54. |
1977 |
Frasca P, Harper RA, Katz JL. Collagen fiber orientations in human secondary osteons. Acta Anat. 1977;98(1):1-13. |
1970 |
Yamada H. Strength of Biological Materials. Evans FG, ed. Baltimore, MD: Williams & Wilkins Company; 1970. |
1974 |
Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng. 1974;2(2):217-225. |
1876 |
Rauber AA. Elasticität Und Festigkeit Der Knochen: Anatomisch-Physiologische Studie. Leipzig, Germany: Verlag Von Wilhelm Engelmann; 1876. |
1992 |
Hogan HA. Micromechanics modeling of Haversian cortical bone properties. J Biomech. May 1992;25(5):549-556. |
2012 |
McNally EA, Schwarcz HP, Botton GA, Arsenault AL. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One. January 17, 2012;7(1):e29258. |
1985 |
Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG. Anisotropic yield behavior of bone under combined axial force and torque. J Biomech. 1985;18(1):61-69. |
2006 |
Yang QD, Cox BN, Nalla RK, Ritchie RO. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials. March 2006;27(9):2095-2113. |
2015 |
Seref-Ferlengez Z, Kennedy OD, Schaffler MB. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? BoneKEy Rep. March 2015;4:644. |
1999 |
Weiner S, Traub W, Wagner HD. Lamellar bone: structure–function relations. J Struct Biol. June 1999;126(3):241-255. |
1998 |
Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Ann Rev Mater Sci. August 1998;28:271-298. |
1992 |
Weiner S, Traub W. Bone structure: from ȧngstroms to microns. FASEB J. February 1992;6(3):879-885. |
1997 |
Weiner S, Arad T, Sabanay I, Traub. W. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone. June 1997;20(6):509-514. |
2005 |
O'Brien FJ, Taylor D, Lee TC. The effect of bone microstructure on the initiation and growth of microcracks. J Orthop Res. March 2005;23(2):475-480. |
1984 |
Currey JD. Mechanical Adaptations of Bone. Princeton, NJ: Princeton University Press; 1984. |
2019 |
Burr DB. Stress concentrations and bone microdamage: John Currey's contributions to understanding the initiation and arrest of cracks in bone. Bone. October 2019;127:517-525. |
2008 |
Nikolov S, Raabe D. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J. June 2008;94(11):4220-4232. |
1999 |
Jepsen KJ, Davy DT, Krzypow DJ. The role of the lamellar interface during torsional yielding of human cortical bone. J Biomech. March 1999;32(3):303-310. |
2013 |
Ural A, Mischinski S. Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech. May 2013;103:141-152. |
1999 |
Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. April 1999;32(4):437-441. |
2012 |
Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM. Considerations for reporting finite element analysis studies in biomechanics. J Biomech. February 23, 2012;45(4):625-633. |
2003 |
O’Brien FJ, Taylor D, Lee TC. Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech. July 2003;36(7):973-980. |
1971 |
Katz JL, Ukraincik K. On the anisotropic elastic properties of hydroxyapatite. J Biomech. May 1971;4(3):221-227. |
2011 |
Reisinger AG, Pahr DH, Zysset PK. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol. February 2011;10(1):67-77. |
1998 |
Wang XD, Masilamani NS, Mabrey JD, Alder ME, Agrawal CM. Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties. Bone. July 1998;23(1):67-72. |
1996 |
Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone. May 1996;18(5):417-428. |
2010 |
Hamed E, Lee Y, Jasiuk I. Multiscale modeling of elastic properties of cortical bone. Acta Mech. August 2010;213(1):131-154. |
2008 |
Burgers TA. Press-Fit Fixation and Viscoelastic Response of a Bone-Implant Interface in the Distal Femur [PhD thesis]. University of Wisconsin – Madison; 2008. |
2008 |
Siegmund T, Allen MR, Burr DB. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 2008;41(7):1427-1435. |
2007 |
Vashishth D. Hierarchy of bone microdamage at multiple length scales. Int J Fatigue. June 2007;29(6):1024-1033. |
2010 |
Katti DR, Pradhan SM, Katti KS. Directional dependence of hydroxyapatite-collagen interactions on mechanics of collagen. J Biomech. June 18, 2010;43(9):1723-1730. |
2006 |
Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A. Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone. April 2006;38(4):466-474. |
1982 |
Gilmore RS, Katz JL. Elastic properties of apatites. J Mater Sci. 1982;17:1131-1141. |
2009 |
Franzoso G, Zysset PK. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomech Eng. February 2009;131(2):021001. |
2000 |
Jäger I, Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J. October 2000;79(4):1737-1746. |
2000 |
Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP. In vivo diffuse damage in human vertebral trabecular bone. Bone. February 2000;26(2):147-152. |
2003 |
Vashishth D, Tanner KE, Bonfield W. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech. January 2003;36(1):121-124. |
1993 |
Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. February 1993;26(2):111-119. |
1990 |
Burr DB, Stafford T. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res. November 1990;260:305-308. |
2012 |
Vaughan TJ, McCarthy CT, McNamara LM. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. J Mech Behav Biomed Mater. August 2012;12:50-62. |
1998 |
Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Hasan MS, Pidaparti R. Does microdamage accumulation affect the mechanical properties of bone? J Biomech. April 1998;31(4):337-345. |
1998 |
Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92-102. |
1994 |
Schaffler MB, Pitchford WC, Choi K, Riddle JM. Examination of compact bone microdamage using back-scattered electron microscopy. Bone. September–October 1994;15(5):483-488. |
2007 |
Buehler MJ. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. July 25, 2007;18(9):295102. |
1975 |
Runkle JC, Pugh J. The micro-mechanics of cancellous bone, II: determination of the elastic modulus of individual trabeculae by a buckling analysis. Bull Hosp Joint Dis. April 1975;36(1):2-10. |
2006 |
Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P. Fibrillar level fracture in bone beyond the yield point. Int J Fract. June 2006;139(3-4):425-436. |
2008 |
Buehler MJ. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater. January 2008;1(1):59-67. |
2012 |
Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke H-J, Zysset PK. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed Mater. November 2012;15:218-228. |
2004 |
Iyo T, Maki Y, Sasaki N, Nakata M. Anisotropic viscoelastic properties of cortical bone. J Biomech. September 2004;37(9):1433-1437. |
2002 |
Martin RB. Is all cortical bone remodeling initiated by microdamage? Bone. January 2002;30(1):8-13. |
2006 |
Dong XN, Guo XE. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng. June 2006;128(3):309-316. |
1992 |
Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. January 1992;274:124-134. |
1985 |
Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18(3):189-200. |
1998 |
Akiva U, Wagner HD, Weiner S. Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci. March 15, 1998;33(6):1497-1509. |
1976 |
Evans FG. Mechanical properties and histology of cortical bone from younger and older men. Anat Rec. 1976;185(1):1-12. |
2004 |
Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. January 2004;37(1):27-35. |
2005 |
Hoffler CE, Guo XE, Zysset PK, Goldstein SA. An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng. January 2005;127(7):1046-1053. |
1998 |
Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB. Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res. May 1998;16(3):322-329. |
1975 |
Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8(6):393-405. |
1974 |
Black J, Mattson R, Korostoff E. Haversian osteons: size, distribution, internal structure, and orientation. J Biomed Mater Res. September 1974;8(5):299-319. |
1966 |
McElhaney JH. Dynamic response of bone and muscle tissue. J Appl Physiol. 1966;21(4):1231-1236. |
2004 |
Dong XN, Guo XE. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech. August 2004;37(8):1281-1287. |
2002 |
Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Proc R Soc B. February 28, 2002;357(1418):191-197. |
2003 |
Taylor D, Lee TC. Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone. J Anat. August 2003;203(2):203-211. |
1992 |
Wagner HD, Weiner S. On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech. November 1992;25(11):1311-1320. |
1998 |
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. July 1998;31(7):601-608. |
1997 |
Norman TL, Wang Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone. April 1997;20(4):375-379. |
2012 |
Abdel-Wahab AA, Maligno AR, Silberschmidt VV. Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comp Mater Sci. February 2012;52(1):128-135. |
2007 |
Fritsch A, Hellmich C. “Universal” microstructural patterns in bone: micromechanics-based prediction of anisotropic material behavior. J Theo Biol. February 21, 2007;244(4):597-620. |
1999 |
Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. October 1999;32(10):1013-1020. |
2006 |
Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA. November 21, 2006;103(47):17741-17746. |
2006 |
Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases. March 2006;1(1):1-5. |
2009 |
Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theo Biol. September 21, 2009;260(2):230-252. |
1993 |
Marotti G. A new theory of bone lamellation. Calcif Tiss Int. February 1993;53(suppl 1):S47-S56. |
2005 |
Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. August 2005;4(8):612-616. |
2006 |
Gao H. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int J Fract. March–April 2006;138(1-4):101-137. |
2013 |
Nair AK, Gautieri A, Chang S-W, Buehler MJ. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 2013;r:1724. |
2003 |
Gao H, Ji B, Jäger IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA. May 13, 2003;100(10):5597-5600. |