A computational method has been developed to obtain numerical results in the stress analysis of adaptive elastic materials. The method is based on a 3-dimensional finite element model that can change geometry and material properties based on the local strain. The solution procedure is iterative; the model is updated in time steps based on the current remodeling to provide incremental remodeling predictions. The method provides a vehicle for examination of different continuum models and their corresponding parameters for strain-induced remodeling in long bone. Use of the method with simple models of theoretical interest is presented. Results show agreement with available analytical results as well as the importance of coupled remodeling effects not previously examined.