Theoretical predictions of surface bone remodeling in the diaphysis of a long bone under a constant superposed compressive load are made. The bone is modeled as a hollow circular cylinder. The surface remodeling theory due to Cowin and Van Buskirk is employed. It is shown that there is a great variety of solutions to the problem. Both endosteal and periosteal surfaces can move in either direction, in or out, in the same or opposite direction. It is possible for the medullary canal to fill up completely and for the endosteal surface to vanish. The particular type of response that develops depends upon the magnitude of the applied compressive load and the values of the surface remodeling rate coefficients.