The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. However, the mechanical properties of the pia-arachnoid complex and its influence on the overall response of the brain have not been well characterized. Consequently, finite element (FE) brain models have tended to oversimplify the response of the pia-arachnoid complex, possibly resulting in a loss of accuracy in the model predictions.
The aim of this study was to determine, experimentally, the material properties of the pia-arachnoid complex under quasi-static and dynamic loading conditions. Specimens of the pia-arachnoid complex were obtained from the parietal and temporal regions of freshly slaughtered bovine subjects with the specimen orientation recorded. Single-stroke, uniaxial quasi-static and dynamic tensile experiments were performed at strain-rates of 0.05, 0.5, 5 and 100 s\u-\u1 (n \me 10 for each strain rate group). Directional differences of the pia-arachnoid complex were also investigated. Results from this study revealed the pia-arachnoid complex was rate-dependent and isotropic, suggesting that the pia-arachnoid complex can provide omnidirectional support and load bearing to the adjacent brain tissue during an impact.