Understanding the mechanical behaviour of bones up to failure is necessary for diagnosis and prevention of accident and trauma. As far as we know, no authors have yet studied the tensile behaviour of compact bone including failure under dynamic loadings (1 m/s). The originality of this study comes from not only the analysis of compact bone failure under dynamic loadings, the results of which are compared to those obtained under quasi-static loadings, but also the development of a statistical model. We developed a protocol using three different devices. Firstly, an X-ray scanner to analyse bone density, secondly, a common tensile device to perform quasi-static experiments, and thirdly, a special device based upon a hydraulic cylinder to perform dynamic tests. For all the tests, we used the same sample shape which took into account the brittleness of the compact bone. We first performed relaxation and hysteresis tests followed by tensile tests up to failure. Viscous and plastic effects were not relevant to the compact bone behaviour so its behaviour was considered elastic and brittle. The bovine compact bone was three to four times more brittle under a dynamic load than under a quasi-static one. Numerically, a statistical model, based upon the Weibull theory, is used to predict the failure stress in compact bone.