The purpose of this study was to characterize the contributions of individual muscles to forward progression and vertical support during walking. We systematically perturbed the forces in 54 muscles during a three-dimensional simulation of walking, and computed the changes in fore–aft and vertical accelerations of the body mass center due to the altered muscle forces during the stance phase. Our results indicate that muscles that provided most of the vertical acceleration (i.e., support) also decreased the forward speed of the mass center during the first half of stance (vasti and gluteus maximus). Similarly, muscles that supported the body also propelled it forward during the second half of stance (soleus and gastrocnemius). The gluteus medius was important for generating both forward progression and support, especially during single-limb stance. These findings suggest that a relatively small group of muscles provides most of the forward progression and support needed for normal walking. The results also suggest that walking dynamics are influenced by non-sagittal muscles, such as the gluteus medius, even though walking is primarily a sagittal-plane task.
Keywords:
Walking; Forward dynamics; Induced accelerations; Muscle function