Knee pain is a common complaint among older Americans, nearly half of whom have developed or will develop painful osteoarthritis. Osteoarthritis is primarily a disease of articular cartilage, the low‐friction, shock‐absorbing connective tissue that lines long bones at their articulating surfaces. Within these joint tissues and within arthritis, the protein collagen VI plays an uncertain role, although it has been implicated in several muscle and ligament disorders. Determination of the collagen VI role in bone and cartilage of the knee is the focus of this dissertation.
Within articular cartilage, collagen VI exclusively localizes to and delimits the pericellular matrix (PCM), which differs from the extracellular matrix (ECM) in composition and structure. To interact with the cell, a molecule must first pass through the PCM. Fluorescent dextran diffusivities were quantified in the cartilage PCM using a newly developed model of scanning microphotolysis (SCAMP), a line photobleaching technique. Diffusion was slower in the PCM than in the ECM, although not in early‐ stage arthritic tissue. These results support the hypothesis that diffusivity is lower in the PCM than in the ECM of healthy articular cartilage, presumably due to differences in proteoglycan content.
Arthritic degradation is partly mediated by interleukin‐1 (IL‐1), a catabolic cytokine that affects the mechanical properties of articular cartilage and preferentially binds to cell‐surface receptors in the surface zone. Since cells are the cartilage metabolic units, matrix degradation is hypothesized to influence molecular transport in the PCM before the ECM. Cartilage was cultured with or without IL‐1, soaked in FITC‐ ovalbumin, and photobleached using SCAMP to measure diffusivity. Over 7 days of culture, IL‐1 doubled the diffusivity in both zones (surface, middle) and matrices (PCM, ECM) of the cartilage. Diffusivity within the PCM was slightly lower than within the ECM. No increase in PCM diffusivity relative to ECM diffusivity was detected within either zone, suggesting that PCM‐localized degradation either cannot be distinguished at these time points or cannot be detected by measures of ovalbumin diffusion.
To determine the effects of collagen VI absence on the morphometry and physical properties of the joint, knees of 2‐, 9‐, and 15‐month‐old Col6a1+/+ and Col6a1‐/‐ mice were studied. Bone morphometry was evaluated using micro‐computed tomography (microCT). Subchondral bone thickness, joint‐capsule thickness, and cartilage degradation were assessed by histology. Cartilage elastic modulus, roughness, and coefficient of friction were measured by atomic force microscopy (AFM). Diffusion through the cartilage ECM was determined by SCAMP. Overall, collagen VI absence had profound effects on the morphometry of the proximal tibia and the overall histological structures of the mouse knee, yet minimal effects on the friction, roughness, elastic modulus, and diffusional properties of the articular cartilage. Musculoskeletal abnormalities at the knee do result from collagen VI absence.