Principal stresses acting in the midshafts of the radius and metacarpus of the horse were determined from in vivo strain recordings during locomotion and jumping. Ground forces and limb position were also recorded. Over a range of speed and gait the radius was subjected to considerable bending, whereas the metacarpus was loaded primarily in axial compression. As a result, peak stresses acting in the radius (maximum: –45 MN/m²) were consistently 50% greater than those acting in the metacarpus (maximum: –31 MN/m²). The increase in peak bone stress (radius: 119% and metacarpus; 114%) with increasing speed was matched by a 103% increase in the mass‐specific vertical force (Av) exerted on the limb and a 55% decline in duty factor of the limb. The forelimb was closely aligned with the direction of ground force during the support phase (
Significantly greater stresses were recorded in each bone during jumping: –81 MN/m² in the radius and –53 MN/m² in the metacarpus. While the distribution of loading in the radius was similar to that during steady state locomotion, greater variability in the magnitude and/or distribution of metacarpal loading was observed between animals, largely due to differences in the orientation of the limb during takeoff and landing. These data demonstrate that the horse, despite its large size, maintains a safety factor of nearly 3–4 during peak performance.