Degenerative disc disease is a common ailment with enormous medical, psychosocial and economic ramifications. This study was designed to investigate the utility of a thiol-modified hyaluronan(TMHA) and elastin-like polypeptide(EP) composite material as a potential tissue engineering scaffold to reconstitute the nucleus pulposus in early degenerative disc disease. TMHA and EP were combined in various concentrations and cross-linked using poly(ethylene glycol)diacrylate. Resulting materials were evaluated biomechanically and biologically. Confined compression testing revealed that the addition of EP to TMHA-based gels resulted in a stiffer construct, but remained an order of magnitude less stiff than native nucleus. The in vitro cell culture experiments with human intervertebral disc cells demonstrated 70% cell viability at three weeks with apparent maintenance of phenotype. The addition of EP did not have a significant biologic effect. An in vivo pilot study demonstrated biocompatibility of the TMHA-based hydrogels; additional power is required to adequately assess treatment effect.