Antler is a unique mineralized tissue, with extraordinary toughness as well as an ability to annually regenerate itself in its entirety. The high fracture resistance enables it to fulfill its biological function as a weapon and defensive guard during combats between deer stags in the rutting season. However, very little is quantitatively understood about the structural origin of the antler's high toughness. We used a unique combination of time-resolved synchrotron small angle X-ray diffraction together with tensile testing of antler cortical tissue under physiologically wet conditions. We measured the deformation at the nanoscale from changes in the meridional diffraction pattern during macroscopic stretch-to-failure tests. Our results show that on average fibrils are strained only half as much as the whole tissue and the fibril strain increases linearly with tissue strain, both during elastic and inelastic deformation. Most remarkably, following macroscopic yielding we observe a straining of some fibrils equal to the macroscopic tissue strain while others are hardly stretched at all, indicating an inhomogeneous fibrillar strain pattern at the nanoscale. This behavior is unlike what occurs in plexiform bovine bone and may explain the extreme toughness of antler compared to normal bone.
Keywords:
Biomineralized tissues; Fracture; Nanoscale deformation; Antler; Synchrotron small-angle X-ray diffraction