Loading bone beyond its yield point creates microdamage, leading to reduction in stiffness. Previously, we related microdamage accumulation to changes in mechanical properties. Here, we develop a model that predicts stiffness loss based on the presence of microdamage. Modeling is done at three levels: (1) a single trabecula, (2) a cellular solid consisting of intact, damaged, and fractured trabeculae, and (3) a specimen with a localized damage band. Predictions of a reduced modulus agree well with experimental measured modulus reductions of post-yield compression of bovine trabecular bone. The predicted reduced modulus is relatively insensitive to changes in the input parameters.