In situations that might lead to a vehicle crash, drivers often perform an evasive maneuver, such as braking or steering, in an attempt to avoid a crash. If a crash was not avoided, the maneuver could influence the injury outcome by altering the occupant’s position. Occupants use their muscles in response to a maneuver, and because the typical accelerations are low during maneuvers, the muscle activity can influence the kinematics. Thus, it is important to include the response to these potential maneuvers before the crash when predicting occupant injuries in a crash. The response to maneuvers could be evaluated by adding active musculature to existing evaluation tools, such as human body models. Furthermore, in volunteer studies, the head and torso displacements during maneuvers vary between occupants, but the cause for this variability remains to be identified. Two aims were defined for this thesis, addressed in two parts. The first aim was to advance the active neck and lumbar muscle controllers in the SAFER HBM to predict average response to maneuvers. The second aim was to further understand why such variability is seen in occupant response to evasive maneuvers.
Three muscle controller concepts were evaluated in this thesis, two of which were aimed at emulating the reflexes responding to input from the vestibular system that control the head position in space, and one controller that emulated reflexes that respond to lengthening of muscles. For the first aim, the active muscle controllers in the SAFER HBM were updated to allow for simulations with large vehicle yaw rotations, and the predictive capabilities were evaluated in braking, steering, and combinations. In a subsequent study, the updated controllers were tuned to volunteer kinematics in braking and steering, and the model performance was evaluated in the same conditions. It was concluded that the SAFER HBM, with the updated and tuned controllers, could predict passenger head kinematics in braking and steering with good to excellent results.
The occupant variability was addressed by statistical analysis of volunteer kinematics in six different vehicle maneuvers. In two subsequent studies, the Active Human Body Model developed within the first aim was used to analyze the model sensitivity to Human Body Model and boundary condition characteristics in braking. From the analysis of volunteer kinematics, it was concluded that the belt system was the most influential predictor for head and torso displacements across all maneuvers, while other characteristics such as sex, stature, age, and body mass index were less influential. In the subsequent studies, the seat forward/rearward position and spinal curvature were found to be most influential in braking.