1IRC in Biomedical Materials, Institute of Orthopaedics (University College and Middlesex School of Medicine), Stanmore, United Kingdom
2IRC in Biomedical Materials, Queen Mary and Westfield College, London, United Kingdom
Abstract and keywords
A model system has been developed to investigate cell deformation of chondrocytesin vitro. Chondrocytes were isolated from bovine articular cartilage by enzymatic digestion and seeded in agarose (type VII) at a final concentration of 2 × 10⁶ cells·ml⁻¹ in 3% agarose. Mechanical evaluation of the system showed no change in the tangent modulus of agarose/chondrocyte cultures over a 6-d culture period. The resulting agarose/chondrocyte cultures were subjected to compressive strains ranging from 5–20%. Cell shape was assessed by measuring the dimensions of the cell both perpendicular (x) and parallel (y) to the axis of compression and deformation indices (I = y/x) calculated. Cell deformation increased with the level of strain applied for freshly isolated chondrocytes. The cultures were maintained in medium that inhibits or stimulates matrix production (DMEM and DMEM + 20% FCS, respectively) in order to assess the effect of cartilaginous matrix on chondrocyte deformation. Matrix elaborated by the cells markedly influenced levels of cell deformation, an increase in matrix leading to a decrease in cell deformation. Freshly isolated deep zone chondrocytes were found to deform significantly more than surface zone chondrocytes, although this effect was lost after 6 d in culture. The elaborated matrix also altered the recovery characteristics of the chondrocytes following constant compressive strain of 15% for 24 h. Cells that had elaborated matrix took several hours to return to unloaded shape, while cells without matrix returned to the unloaded shape instantly.