Cross-centerline crashes occur rarely in the United States but are especially severe. This type of crash is characterized by one vehicle departing over a centerline and encountering a vehicle traveling in the opposite direction. In recent years, automakers have started developing and implementing lane departure warning (LDW) on newer vehicles. This system provides the potential to reduce or significantly impact the frequency of cross-centerline crashes. The objective of this thesis was to estimate the potential crash and injury benefits of a LDW system if installed on every vehicle in the US fleet.
This research includes the following 1) a characterization of cross-centerline crashes in the United States today with current and future prevention methods, 2) a reconstruction methodology used for all crashes including rollovers and heavy vehicles, and 3) a simulation model and approach method used to estimate potential benefits of LDW systems on cross-centerline crashes.
Cross over to left crashes account for only 4% of non-junction non-interchange crashes but account for 44% of serious injury crashes of the same type. As part of this research, 42 crosscenterline crashes were reconstructed and simulated as if they had a LDW system installed. Accounting for driver capability to react to a LDW alert, crash reduction benefits ranged from 22 – 30%.Using injury risk curves, the probability of experiencing a MAIS2+ injury in a crosscenterline crash was reduced by 29% when using a LDW system.