We have created a graphics-based software system that enables users to develop and analyze musculoskeletal models without programming. To define a model using this system one specifies the surfaces of the bones, the kinematics of the joints and the lines of action and forcegenerating parameters of the muscles. Once a model is defined, the function of each muscle can be analyzed by computing its length, moment arms, force and joint moments. The software has been implemented on a computer graphics workstation so that users can view the model from any perspective and graphically manipulate the joint kinematics and musculoskeletal geometry. Models can also be animated to visualize the results of motion analysis experiments. Since the software can be used to study models of many different musculoskeletal structures, it can enhance the productivity of investigators working on diverse problems in biomechanics.
Keywords:
Biomechanics; Computer modeling; Computer graphics; Surgical simulation; Animation; Musculoskeletal; Muscle