The high importance of intracortical porosity for mechanical strength of cortical bone has been established. The contribution of other parameters of microstructure such as osteon dimensions for strength is in discussion. The aim of this study was to evaluate the predictive value of microcomputed tomography (µCT) for porosity and other microstructural parameters of cortical bone in cortical bone biopsies. Femoral cortical bone specimens from the middiaphysis of 24 patients were harvested during the procedure of total hip replacement at the location where normally one hole (Ø4.5 mm) for the relief of the intramedullary pressure is placed.In vitro intracortical porosity and bone mineral density (BMD) measurements by µCT were compared with structural parameters assessed in histological sections of the same specimens. A strong correlation was found between intracortical porosity measured by µCT and histological porosity (r=0.95, Plt;0.0001). Porosity measured by µCT was also a strong predictor for other parameters describing dimensions of porous structures. BMD−1 was associated with osteonal area (r=−0.76, P<0.0001). We consider the measurement of porosity by µCT as a very potent procedure for assessing intracortical porosity and parameters related to porous structures of cortical bone nondestructivelyin vitro.
Keywords:
Cortical bone; Microstructure; Microcomputed tomography; Porosity; Bone mineral density