An extrusion process for manufacturing microcellular plastics is presented. In the past, microcellular structures have been produced in batch processes by using a thermodynamic instability of a polymer/gas system. In order to utilize such a thermodynamic instability in a continuous extrusion process, a large amount of gas must be dissolved quickly in a molten plastic flowing in the machine, and a rapid drop in the gas solubility must be induced in the flowing polymer/gas solution. Since the solubility of a gas in a polymer is a sensitive function of pressure, a thermodynamic instability for producing a microcellular structure can be induced by rapidly lowering the pressure. This paper presents a means for continuously forming the polymer/gas solution at an industrial processing rate and a means of nucleating microcells in the polymer/gas solution using a nozzle. Finally, a process model for controlling the cell morphology is presented by identifying the key parameters that control microcellular foaming in a continuous process. The experimental results agree with theoretical analyses, confirming the fact that the processing pressure strongly affects the microcellular foaming process through its effects on the amount of gas dissolved in the polymer and the magnitude of the pressure drop in the nucleation device.