Numerous helmet rating methods have been proposed to assess the safety and effectiveness of bicycle helmets. The methods usually involve a series of experimental impact tests using an Anthropomorphic Test Device (ATD) headform. There are several headforms available for the purpose and this study sought to assess how the choice of headform influences the safety assessment and ratings of bicycle helmets by following four proposed rating programs using three commonly used headforms. 19 head impact cases were evaluated computationally using the National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform, Hybrid III (HIII) headform, and standard EN960 headform. The results show that for most oblique impact cases, EN960 produced considerably lower Peak Angular Acceleration (PAA), Peak Angular Velocity (PAV) and head injury risk compared to HIII and NOCSAE. This implies that the safety performance of bicycle helmets could be rated higher when using uncoated metal headforms compared to rubber-coated ones. The different headforms’ tendency to produce varying rotational motion in oblique impacts raises questions about which of the headforms are suitable for such impact tests. The results presented in this study emphasize the occasional contradictions in helmet ratings presented by helmet rating programs.
Keywords:
Head impact testing; Head injury risk; Oblique impacts; Bicycle helmet; Headform