Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used.
We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(Nisopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG).
In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles on the water content and dimensional recovery of hydrogels made from three candidate polymer formulations were also determined.
Unlike PNIPAAm and PEG grafted PNIPAAm hydrogels, PEG branched hydrogels have covalently linked networks. Addition of 7 mol% PEG branches to PNIPAAm resulted in a hydrogel with a higher water content and better elastic recovery than hydrogels made from pure PNIPAAm. PEG branched PNIPAAm hydrogels were shown to have mass, chemical, and compressive mechanical stability in vitro. Furthermore, these hydrogels showed superior dimensional recovery after compressive cycling than pure PNIPAAm and PEG grafted PNIPAAm hydrogels. The 7 mol% PEG branched PNIPAAm hydrogels have suitable swelling and mechanical properties to potentially serve as a nucleus pulposus replacement.
s