Articular cartilage is a hydrated soft tissue with a fibrous solid matrix characterized by high porosity and low permeability. It is the bearing material of diarthrodial joints, permitting motion and transmitting loads with extraordinarily low friction. This function may be disrupted pathologically by osteoarthritis, a disease where cartilage becomes weakened and eroded.
Osteoarthritis creates pain during normal activities like walking or grasping, thus diminishing quality of life. The disease affects nine percent of Americans and is one of the leading causes of disability worldwide. There is presently no cure or prevention for osteoarthritis, only palliative treatments designed to help patients manage pain and regain mobility. New such treatments are developed in part by advancing the science of cartilage mechanics, structure and function, and this dissertation presents novel contributions toward this effort: Chapters 2, 3, and 4 enhance our knowledge of the structure-function relationships critical to our understanding of cartilage friction and load support. Whereas most prior theoretical and experimental studies have focused on the analysis of small cylindrical explants, or idealized joint geometries such as cylindrical or spherical articular layers, these chapters describe novel investigations performed on whole articular layers of the shoulder and knee joints. Insights from these investigations have a direct impact on our formulation of design objectives in cartilage tissue engineering, whose purpose is to grow constructs that reproduce the functional properties of native cartilage. The studies presented in this chapter are critical to ongoing tissue engineering studies in our laboratory, which has pioneered the development of anatomically sized cartilage constructs. Finally, Chapter 5 describes the development of a novel clinical treatment for thumb osteoarthritis that uses bent osteochondral allografts (living bone and cartilage from human donors) to replace the eroded thumb trapezial articular layer with a healthy and thick articular layer from another joint such as the knee. This highly promising treatment strategy overcomes the limitation of size mismatch between donor and recipient which had relegated osteochondral allograft surgery to a niche treatment.
Like other fibrous tissues, cartilage exhibits tension-compression nonlinearity, meaning it can be 100 times stiffer in tension than in compression. Tension-compression nonlinearity allows compressive physiologic joint loads to be supported by elevated interstitial fluid pressure and tensile stress within the collagen fibrils, effectively shielding the solid matrix from compressive load. According to theory, fluid load support derives directly from tension-compression nonlinearity.
Fluid load support is also a dominant mechanism of cartilage lubrication. Because cartilage is 80 − 90% water, most of the contact traction on the porous cartilage surface takes the form of hydrostatic fluid pressure. Friction forces only occur upon solid-on-solid contact, so cartilage friction is nearly negligible, even for joint contact forces that may routinely exceed three or four times the body’s total weight. The dependence of friction on fluid load support is demonstrated by experiments that simultaneously measure interstitial fluid pressure and friction – a transient rise in friction occurs as pressure subsides and fluid drains from the tissue.
These structure-function relationships have been identified over decades of research, mostly through small cartilage explant studies, which have supported hypothesized mechanisms under non-physiologic conditions. Therefore, in situ studies utilizing intact, naturally-congruent articular surfaces under physiologic loading conditions would significantly extend and validate these principles. For example, friction may rise nearly 100-fold after only 1 hour in cartilage explant experiments, yet there is no evidence that normal daily activities spanning 16 hours or more lead to cartilage damage. Can fluid load support sustain low friction under these relatively harsh conditions? To date, no study has examined this question, so Chapter 2 of this work addresses the hypothesis that the friction coefficient of diarthrodial joints can remain low over a full day of loading at physiologic speeds and load magnitudes.
Another question that may be uniquely addressed by an in situ analysis is: What is the complete state of stress within naturally-congruent cartilage layers? A primary hypothesis for the initiation and progression of osteoarthritis is that the state of stress within articular cartilage may exceed a threshold beyond which the tissue is unable to repair itself. Since the complete stress tensor within a material is immeasurable, techniques such as finite element analysis must be used to examine the state of stress. Additionally, a theoretical framework such as mixture theory may be used to examine the stresses in the fluid and solid constituents of the tissue separately, making it possible to test theories of solid matrix damage. Chapter 3 of this work uses this strategy to examine the hypothesis that physiologic solid matrix stresses within anatomically-shaped, biphasic, tension-compression nonlinear cartilage layers are primarily tensile, despite the fact that the articular layers are loaded in compression.
The proteoglycan content of articular cartilage gives the tissue an osmotic swelling pressure that is resisted by tensile stresses in the collagen fibrils, even in the absence of external loads. This charge effect may be additionally incorporated into a mixture theory finite element analysis to examine the role of osmotic swelling on the solid matrix stresses in a physiologic, in situ analysis. This capability has only been developed recently and is explored for the first time in Chapter 4.
The final part of this work translates basic cartilage science into a clinical therapy for thumb joint osteoarthritis, a common site for this disease. The current gold-standard treatment for thumb joint osteoarthritis replaces the trapezium bone with a soft-tissue tendon autograft, relieving pain but significantly weakening hand strength. Living osteochondral allograft transplantation may provide a relatively straightforward treatment alternative, though this procedure has not been used for the thumb due to the inadequate availability of suitable allografts. The ideal allograft would have a relatively thick articular layer to provide sufficient compliance for promoting joint congruence with the mating metacarpal surface, and surface curvatures that match the saddle-shaped anatomy of the distal trapezial articular surface to reproduce the normal joint motions. A potential solution that would provide suitable trapezium osteochondral allografts for patients involves precisely machining and bending allografts from a lower extremity joint with thicker cartilage, such as the distal femoral surface of the knee, to match the shape and curvature of the trapezium. Such bent osteochondral allografts would provide all the desired benefits of the ideal arthroplasty. Chapter 5 outlines the development of this novel technology, including proof of concept and feasibility demonstrations, business strategy and market analysis.