A technique to correlate the ultrastructural distribution of mineral with its organic material in identical sections of mineralized turkey leg tendon (MTLT) and human bone was developed. Osmium or ethanol fixed tissues were processed for transmission electron microscopy (TEM). The mineralized tissues were photographed at high, intermediate, and low magnifications, making note of section features such as fibril geometry, colloidal gold distribution, or section artifacts for subsequent specimen realignment after demineralization. The specimen holder was removed from the microscope, the tissue section demineralized in situ with a drop of 1 N HCl, then stained with 2% aqueous vanadyl sulfate. The specimen holder was reinserted into the microscope, realigned with the aid of the section features previously noted, and rephotographed at identical magnification used for the mineralized sections. A one to one correspondence was apparent between the mineral and its demineralized crystal “ghost” in both MTLT and bone. The fine structural periodic banding seen in unmineralized collagen was not observed in areas that were fully mineralized before demineralization, indicating that the axial arrangement of the collagen molecules is altered significantly during mineralization. Regions that had contained extrafibrillar crystallites stained more intensely than the intrafibrillar regions, indicating that the noncollagenous material surrounded the collagen fibrils. The methodology described here may have utility in determining the spatial distribution of the noncollagenous proteins in bone.
Keywords:
Bone; Apatite; Collagen; Demineralization; Ultrastructure