We depict a fragility bone state in two primitive osteoporosis populations using 3D high‐resolution peripheral in vivo QCT (HR‐pQCT). Postmenopausal women (C, controls, n = 54; WF, wrist, n = 50; HF, hip, n = 62 recent fractured patients) were analyzed for lumbar and hip DXA areal BMD (aBMD), cancellous and cortical volumetric BMD (vBMD), and microstructural and geometric parameters on tibia and radius by HR‐pQCT. Principal component analysis (PCA) allowed extracting factors that best represent bone variables. Comparison between groups was made by analysis of covariance (ANCOVA). Two factors (>80% of the entire variability) are extracted by PCA: at the radius, the first is a combination of trabecular parameters and the second of cortical parameters. At the tibia, we found the reverse. Femoral neck aBMD is decreased in WF (8.6%) and in HF (18%) groups (no lumbar difference). WF showed a ∼20% reduction in radius trabecular vBMD and number. Radius cortical vBMD and thickness decrease by 6% and 14%, respectively. At the tibia, only the cortical compartment is affected, with ∼20% reduction in bone area, thickness, and section modulus and 6% reduction in vBMD. HF showed same radius trabecular alterations than WF, but radius cortical parameters are more severely affected than WF with reduced bone area (25%), thickness (28.5%), and vBMD (11%). At the tibia, trabecular vBMD and number decrease by 26% and 17.5%, respectively. Tibia cortical bone area, thickness, and section modulus showed a >30% decrease, whereas vBMD reduction reached 13%. Geometry parameters at the tibia displayed the greatest differences between healthy and fractured patients and between wrist and hip fractures.
Keywords:
microarchitecture; moment of inertia; postmenopausal women; fracture; osteoporosis