Purpose: To evaluate the accuracy and applicability of a commercially available microCT system for comparative measurements of the degree and distribution of mineralization of developing bone.
Material and Methods: Homogeneous K2HPO4 solutions with different concentrations (range 0-800 mg/cm3) were used to assess the accuracy of a microCT system equipped with a polychromatic X-ray source. Both high (45 kV) and low (70 kV) tube peak voltages were explored. The resulting attenuation was compared with calculated theoretical attenuation values to estimate the accuracy. As an example of its applicability, the method was used to assess changes in the degree of mineralization of various regions of the mandible from two pigs of different developmental age.
Results: On average, the estimated error of the measured linear attenuation was 10% or less. Accuracy was dependent on the average mineral concentration, the size of the sample, and the energy of the X-ray beam. The accuracy of the microCT system appeared sufficient to distinguish regional differences in the degree of mineralization within and between specimens of developing mandibular bone. Furthermore, the resolution of the system allowed identification of different degrees of mineralization within trabeculae.
Conclusion: Accuracy of microCT with polychromatic radiation can be considered adequate for assessment of the degree of mineralization of developing bone. Therefore, this method provides a three-dimensional means by which to simultaneously investigate the bone structure as well as the degree of mineralization during development in a non-destructive manner and with high resolution.