Detailed and parameterized models of the adult human head were created using the finite element method. Different sizes of the brain and the subdural space were generated, and the models were impacted toward padded surfaces in the frontal, temporal, and occipital direction. The present results show for the first time that, by reducing the brain size and thereby increasing the volume in the subdural space in the finite element model, a significant increase in relative motion was found between the skull and brain which correlated with the reduction of brain size.
Keywords:
Atrophy; Brain; Finite Element Method; Head Impact Power; Head Injury Criterion; Subdural Hematoma