wbldb
home
|
authors
|
theses
Keyak, J. H.
;
Skinner, H. B.
Three-dimensional finite element modelling of bone: effects of element size
J Biomed Eng
. 1992;14(6):483-489
Keywords
Keywords:
Finite element method; bone; computed tomography; biomechanics
Links
DOI:
10.1016/0141-5425(92)90100-Y
PubMed:
1434570
WoS:
A1992JV94100005
Cited Works (4)
Year
Entry
1977
Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure.
J Bone Joint Surg
. 1977;59A(7):954-962.
1990
Keyak JH, Meagher JM, Skinner HB, Mote CD Jr. Automated three-dimensional finite element modelling of bone: a new method.
J Biomed Eng
. 1990;12(5):389-397.
1983
Huiskes R, Chao EYS. A survey of finite element analysis in orthopedic biomechanics: the first decade.
J Biomech
. 1983;16(6):385-409.
1980
Brown TD, Ferguson AB Jr. Mechanical property distributions in the cancellous bone of the human proximal femur.
Acta Orthop Scand
. 1980;51(1):429-437.
Cited By (33)
Year
Entry
2001
Villarraga ML, Ford CM. Applications of bone mechanics. In: Cowin SC, ed.
Bone Mechanics Handbook
. 2nd ed. Boca Raton, FL: CRC Press; 2001:33-1–33-33.
2012
Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T. CT-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
Bone
. April 2012;50(4):824-829.
2013
Zysset PK, Dall'Ara E, Varga P, Pahr DH. Finite element analysis for prediction of bone strength.
BoneKEy Rep
. August 2013;2:386.
2009
Dai Y, Niebur GL. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
Comput Methods Biomech Biomed Eng
. 2009;12(5):599-606.
1999
Jacobs CR, Davis BR, Rieger CJ, Francis JJ, Saad M, Fyhrie DP. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling.
J Biomech
. November 1999;32(11):1159-1164.
2006
Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy.
J Biomech
. 2006;39(13):2457-2467.
2007
Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
J Biomech
. 2007;40(8):1745-1753.
1999
Niebur GL, Yuen JC, Hsia AC, Keaveny TM. Convergence behavior of high-resolution finite element models of trabecular bone.
J Biomech Eng
. December 1999;121(6):629-635.
2003
Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions.
J Biomech Eng
. August 2003;125(4):434-438.
2005
Yeni YN, Christopherson GT, Dong XN, Kim D-G, Fyhrie DP. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.
J Biomech Eng
. February 2005;127(1):1-8.
2007
Yosibash Z, Padan R, Joskowicz L, Milgrom C. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
J Biomech Eng
. June 2007;129(3):297-309.
1993
Marks LW, Gardner TN. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence.
J Biomed Eng
. November 1993;15(6):474-476.
1993
Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone.
J Biomed Eng
. November 1993;15(6):505-509.
2022
Youssefian S, Bressner JA, Osanov M, Guest JK, Zbijewski WB, Levin AS. Sensitivity of the stress field of the proximal femur predicted by CT-based FE analysis to modeling uncertainties.
J Orthop Res
. May 2022;40(5):1163-1173.
1998
Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs.
Med Eng Phys
. January 1998;20(1):1-10.
1998
Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation.
Med Eng Phys
. October 1998;20(7):515-522.
2006
Ramos A, Simões JA. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
Med Eng Phys
. November 2006;28(9):916.
2019
Yue Y, Yang H, Li Y, Zhong H, Tang Q, Wang J, Wang R, He H, Chen W, Chen D. Combining ultrasonic and computed tomography scanning to characterize mechanical properties of cancellous bone in necrotic human femoral heads.
Med Eng Phys
. April 2019;66:12-17.
2001
Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R. Ostehoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution.
Spine
. July 2001;26(14):1555-1560.
2013
Abo-Alhol TR.
Computational Biomechanical Modeling of the Human Knee During Kneeling
[PhD thesis]. University of Denver; August 2013.
1999
Schaffner G.
Assessment of Hip Fracture Risk in Astronauts Exposed to Long-Term Weightlessness
[PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; August 1999.
2009
Dai Y.
Subject-Specific Computational Modeling of Spinal Constructs
[PhD thesis]. University of Notre Dame; April 2009.
2018
Zimmermann Y.
Développement d'une modélisation par éléments finis pour caractérisation non destructive de la biomécanique osseuse à partir d'images MICRO-CT
[Master's thesis]. École polytechnique de Montréal; December 2018.
2012
Emerson NJ.
Development of Patient-Specific CT-FE Modelling of Bone Through Validation Using Porcine Femora
[PhD thesis]. University of Sheffield; September 2012.
2017
Fung A.
Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal
[Master's thesis]. Calgary, AB: University of Calgary; April 2017.
2020
Michalski AS.
A Quantitative Computed Tomography Approach Towards Opportunistic Osteoporosis Screening
[PhD thesis]. Calgary, AB: University of Calgary; March 2020.
1996
Keyak JH.
Prediction of Femoral Strength Using Automated Finite Element Modeling
[PhD thesis]. Berkeley, CA: Berkeley, University of California; 1996.
2000
Niebur GL.
A Computational Investigation of Multiaxial Failure in Trabecular Bone
[PhD thesis]. Berkeley, CA: Berkeley, University of California; 2000.
2003
Fox JC.
Biomechanics of the Proximal Femur: Role of Bone Distribution and Architecture
[PhD thesis]. Berkeley, CA: Berkeley, University of California; 2003.
1996
Rossi SA.
The Prediction of Human Cortical Bone Strength Using the Finite-Element Method: A Study of the Flexural and Torsional Behavior of Femoral Shafts With Simulated Metastatic Lesions
[PhD thesis]. San Francisco, University of California; 1996.
1994
Rudert MJ.
Bone Grafting for Femoral Head Osteonecrosis: Automated Creation of Patient-Specific Finite Element Models
[PhD thesis]. University of Iowa; December 1994.
1996
Adams DJ.
Mechanical Factors Initiating Appositional Bone Formation
[PhD thesis]. University of Iowa; May 1996.
2020
Zaluski D.
Validation of Subject Specific Computed Tomography-Based Finite Element Models of the Human Proximal Tibia Using Full-Field Experimental Displacement Measurements from Digital Volume Correlation
[Master's thesis]. University of Saskatchewan; December 2020.