wbldb
home
|
authors
|
theses
Gardiner, John C.
;
Weiss, Jeffrey A.
Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading
J Orthop Res
. 2003;21(6):1098-1106
Links
DOI:
10.1016/S0736-0266(03)00113-X
PubMed:
14554224
WoS:
000186144200019
Cited Works (15)
Year
Entry
2001
Gardiner JC, Weiss JA, Rosenberg TD. Strain in the human medial collateral ligament during valgus loading of the knee.
Clin Orthop Relat Res
. October 2001;391:266-274.
1996
Hull ML, Berns GS, Varmat H, Patterson HA. Strain in the medial collateral ligament of the human knee under single and combined loads.
J Biomech
. February 1996;29(2):199-206.
1996
Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity.
Comput Meth Appl Mech Eng
. August 15, 1996;135(1-2):107-128.
1997
Atkinson TS, Haut RC, Altiero NJ. A poroelastic model that predicts some phenomenological responses of ligaments and tendons.
J Biomech Eng
. August 1997;119(4):400-405.
1995
Matyas JR, Anton MG, Shrive NG, Frank CB. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL.
J Biomech
. February 1995;28(2):147-157.
1980
Wismans J, Veldpaus F, Janssen J, Huson A, Struben P. A three-dimensional mathematical model of the knee-joint.
J Biomech
. 1980;13(8):677-685.
1993
Giori NJ, Beaupré GS, Carter DR. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons.
J Orthop Res
. July 1993;11(4):581-591.
1987
Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm.
Comput Graph
. 1987;21(4):163-169.
2002
Weiss JA, Gardiner JC, Bonifasi-Lista C. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading.
J Biomech
. July 2002;35(6):943-950.
1998
Quapp KM, Weiss JA. Material characterization of human medial collateral ligament.
J Biomech Eng
. 1998;120(6):757-763.
1999
Li G, Gil J, Kanamori A, Woo SL-Y. A validated three-dimensional computational model of a human knee joint.
J Biomech Eng
. December 1999;121(6):657-662.
1976
Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee: the contributions of the supporting structures: a quantitative in vitro study.
J Bone Joint Surg
. July 1976;58A(5):583-594.
1983
Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.
J Biomech Eng
. May 1983;105(2):136-144.
1983
Arms S, Boyle J, Johnson R, Pope M. Strain measurement in the medial collateral ligament of the human knee: an autopsy study.
J Biomech
. 1983;16(7):491-496.
2002
Hansen KA, Weiss JA, Barton JK. Recruitment of tendon crimp with applied tensile strain.
J Biomech Eng
. February 2002;124(1):72-77.
Cited By (16)
Year
Entry
2004
Li Z, Kim J-E, Eberhardt AW. Nonlinear viscoelastic finite element modeling of a female pubic symphysis. In:
Proceedings of the 32nd International Workshop on Human Subjects for Biomechanical Research
. 2004.179-188.
2008
Quinn KP, Winkelstein BA. Regional changes in collagen fiber alignment may identify the onset of damage in the facet capsular ligament. In:
Proceedings of the 36th International Workshop on Human Subjects for Biomechanical Research
. November 2, 2008; San Antonio, TX.
2017
Butz K, Spurlock C, Roy R, Bell C, Barrett P, Ward A, Xiao X, Shirley A, Welch C, Liste K. Development of the CAVEMAN human body model: validation of lower extremity sub-injurious response to vertical accelerative loading.
Stapp Car Crash J
. November 2017;61:175-209. SAE 2017-22-0006.
2007
Anderson AE, Ellis BJ, Weiss JA. Computer methods in biomechanics and biomedical engineering.
Comput Methods Biomech Biomed Eng
. June 2007;10(3):171-184.
2020
Benos L, Stanev D, Spyrou L, Moustakas K, Tsaopoulos DE. A review on finite element modeling and simulation of the anterior cruciate ligament reconstruction.
Front Bioeng Biotechnol
. August 20, 2020;8:967.
2007
Li Z, Kim J-E, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW. Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study.
J Biomech
. 2007;40(12):2758-2766.
2007
Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones.
J Biomech
. 2007;40(13):2982-2989.
2005
Lujan TJ, Lake SP, Plaizier TA, Ellis BJ, Weiss JA. Simultaneous measurement of three-dimensional joint kinematics and ligament strains with optical methods.
J Biomech Eng
. February 2005;127(1):193-197.
2010
Zec ML, Thistlethwaite P, Frank CB, Shrive NG. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
J Biomech Eng
. January 2010;132(1):011001.
2005
Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: technical aspects.
Med Eng Phys
. December 2005;27(10):845-861.
2009
Masouros S.
Articular Contact in the Knee Joint: A Finite Element Study
[PhD thesis]. Imperial College London; 2009.
2005
DeFrate LE.
The Biomechanics of the Knee Following Injury and Reconstruction of the Posterior Cruciate Ligament
Cambridge, MA: Massachusetts Institute of Technology; June 2005.
2006
Yao J.
Finite Element Modeling of the Meniscus in the Anterior Cruciate Ligament Deficient Knee With Magnetic Resonance Imaging Based Experimental Validation
[PhD thesis]. University of Rochester; 2006.
2011
Westover LM.
Quantifying in Vivo Laxity in the ACL and Individual Knee Joint Structures: A Numerical Modeling Approach
[Master's thesis]. Calgary, AB: University of Calgary; December 2011.
2018
Polak AM.
ACL Strain During Single-Leg Jump Landing: An Experimental and Computational Investigation
[Master's thesis]. University of Waterloo; 2018.
2010
Kersh ME.
Virtual Biomechanical Knee: A Finite Element Ligament Model With Experimental Validation
[PhD thesis]. University of Wisconsin – Madison; 2010.