Experimental evidence suggests that the biosynthetic activity of chondrocytes is regulated primarily by the mechanical environment. In order to study the mechanisms underlying remodeling, adaptation, and degeneration of articular cartilage in a joint subjected to changing loads, it is important to know the time-dependent fluid pressure and stress–strain state in chondrocytes. The purpose of the present study was to develop a theoretical model to simulate the mechanical behaviour of articular cartilage and to describe the time-dependent stress–strain state and fluid pressure distribution in chondrocytes during cartilage deformation. It was assumed that the volume occupied by the chondrocytes is small and that cartilage can be treated as a macroscopically homogenized material with effective material properties which depend on the material properties of the cells and matrix and the volumetric fraction of the cells. Model predictions on the time-dependent distribution of fluid pressure and stress and on the time-dependent cell deformation during confined and unconfined compression tests agree with previous theoretical predictions and experimental observations. The proposed model supplies the tools to study the mechanisms of degeneration, adaptation and remodelling of cartilage associated with cell loading and deformation.
Keywords:
Biphasic; Poroelastic; Soft tissue; Cartilage; Finite element analysis; Cell mechanics; Tissue growth and adaptation