Equilibrium, creep, and dynamic behaviors of agarose gels (2.0–14.8%) in confined compression were investigated in this study. The hydraulic permeabilities of gels were determined by curve-fitting creep data to the biphasic model (
J. Biomech. Eng. 102 (1980) 73) and found to be similar in value to those published in the literature (AIChE J. 42 (1996) 1220). A new relationship between intrinsic permeability and volume fraction of water was found for agarose gel, capable of predicting deformation-dependent permeabilities of bovine articular cartilage and 2% agarose gel published in literature. This relationship is accurate for gels and cartilage over a wide range of permeabilities (four orders of magnitude variation). The dynamic stiffness of the gels increases with gel concentration and loading frequency (0.01–1.0 Hz). The increase in dynamic stiffness with loading frequency is less pronounced for gels with higher concentrations. The results of this study provide a new insight into deformation-dependent permeability behavior of agarose gel and cartilage, and are important for understanding biological responses of cells to interstitial fluid flow in gel or in cartilage under dynamic mechanical loading.