Tissue engineering aims to produce functional constructs with living cells that can fully integrate with the tissue when inserted into the body. Design of the scaffold and the choice of cell type that will be used for production of the tissue engineering construct are very important for the success of the application. For bone tissue engineering, incorporation of substances with antimicrobial properties can supply additional benefits. This dissertation seeks answers for two discrete questions in different chapters: Do carnosol and carnosic acid, phenolic antimicrobial compounds extracted from plants have cytotoxic effect on bone tissue derived cells and do the culture conditions (monolayer or 3D) effect the response of cells (Chapter 2); and how do application of a single type of mechanical force (vibration) and a combination of two forces (vibration plus fluid shear) affect the osteogenesis of tissue engineering constructs (Chapters 3 and 4)? The results of this research demonstrated that carnosol and carnosic acid had bacteriostatic effect at 60 μg/mL but this concentration value was highly cytotoxic for bone tissue derived cells. Nevertheless, when the same cells were incubated under 3D culture conditions their cytotoxic tolerance was higher. The supportive role of mechanical forces on osteogenic differentiation of stem cells on 3D scaffolds prepared by using filter paper, on the other hand, was demonstrated with the increase in osteoblastic gene expression, immunocytochemical staining and detection of mineralization by Alizarin red S staining and quantification. In conclusion this research showed the importance of biochemical and biomechanical cues on osteogenesis.