Osteoarthritis (OA) is a prevalent articular disease characterized by degradation of articular cartilage and bone. Presently, no single imaging modality concurrently captures these changes. This study sought to develop and validate a novel joint imaging technique, contrast enhanced high resolution peripheral quantitative computed tomography (CEHR-pQCT), to concurrently assess bone microarchitecture and cartilage morphology. Cadaveric knees were harvested (n=10) and scanned using magnetic resonance imaging (MRI), HR-pQCT without contrast, and HRpQCT following intra-articular injection of non-ionic contrast media. Joints were disarticulated, and the articular cartilage thickness measured by needle probe. Measures of cartilage morphology were found to be significantly different between MRI, needle probing and CEHRpQCT. Bone microarchitecture was found to be significantly different in CEHR-pQCT, where cortical bone mineral density (BMD) was depressed, and trabecular BMD increased. This study contributes toward the advancement of whole joint imaging techniques, laying the foundation to perform in vivo scanning of knee cartilage and bone.