Supported by field accident data and monitoring results of European Regulation (EC) No. 78/2009, recent plans of the European Commission regarding a way forward to improve passive safety of vulnerable road users include, amongst other things, an extension of the head test area. The inclusion of passive cyclist safety is also being considered by Euro NCAP. Although passenger car to cyclist collisions are often severe and have a significant share within the accident statistics, cyclists are neither considered sufficiently in the legislative nor in the consumer ratings tests. Therefore, a test procedure to assess the protection potential of vehicle fronts in a collision with cyclists has been developed within a current research project. For this purpose, the existing pedestrian head impact test procedures were modified in order to include boundary conditions relevant for cyclists as the second big group of vulnerable road users.
Based on an in-depth analysis of passenger car to cyclist accidents in Germany the three most representative accident constellations have been initially defined. The development of the test procedure itself was based on corresponding simulations with representative vehicle and bicycle models. In addition to different cyclist heights, reaching from a 6-year-old child to a 95%-male, also four pedal positions were considered. By
reconstruction of a real accident the defined simulation parameters could be validated in advance. The conducted accident kinematics analysis shows for a large portion of the constellations an increased head impact area, which can reach beyond the roof leading edge, as well as high average values for head impact velocity and angle. Based on the simulation data obtained for the different vehicle models, cyclist-specific test parameters for impactor tests have been derived, which have been further examined in the course of head and leg impact tests. In order to study the cyclist accident kinematics under real test conditions, different full scale tests with a Polar-II dummy positioned on a bicycle have been conducted. Overall, the tests showed a good correlation with the simulations and support the defined boundary test conditions.
Typical accident scenarios and simulations reveal higher head impact locations, angles and velocities. An extended head impact area with modified test parameters will contribute to an improved protection of vulnerable road users including cyclists. However, due to significantly differing impact kinematics and postures between the lower extremities of pedestrians and cyclists, these injuries cannot be addressed by the means of current test tools such as the flexible pedestrian legform impactor FlexPLI.
Based on the findings obtained within the project as well as the existing pedestrian protection requirements a cyclist protection test procedure for use in legislation and consumer test programmes has been developed, whose requirements have been transferred into a corresponding test specification. This specification provides common head test boundary conditions for pedestrians and cyclists, whereby the existing requirements are modified and two parallel test procedures are avoided.