A complete three-dimensional multi-body dynamic computational model of the human head and neck has been developed and validated using human volunteer experimental data. The complete head-neck model has been used to simulate 15g frontal and 8.5g rear-end impacts with the resulting motion compared against response corridors derived from sled acceleration tests using human volunteers. This paper reports an original work, a further development of the model that incorporates a finite element analysis of the intervertebral discs subjected to the loading conditions determined by the multi-body dynamic model of the head and neck complex.
Keywords:
cervical spine; multi-body model; Finite Element Method (FEM); frontal impact; rear-end impact