This work is about a 2-D lagrangian vortex method allowing simulation of external incompressible flow around arbitrary moving bodies. The initial implementation of the method was developed at Université Catholique de Louvain and adapted for multiple moving bodies in collaboration with Laboratoire de Mécanique des Fluides Numérique. However, thèse modifications werc not validated and no method of force and moment calculation on individual body was available. In this study, several approaches of force and moment calculation are presented and detailed, ail of which do not require information on the pressure field. The first approach uses control surfaces surrounding each body as well as the body surfaces themselves. The second one is developed from a control surface taken at infinity and can only provide total net forces on ail bodies taken together. The third one requires information (velocity and vorticity) only at body surfaces. The latter is the only approach considered up to now that can provide moment of force on the bodies. Ail three methods as well as ail the modifications that were implemented to adapt the solver to moving bodies are validated for low Reynolds number flows around bodies undergoing combined translation and angular motion. Cases of a single cylinder, two cylinders in tandem, and oscillating airfoil are studied. Comparisons are then made with results obtained with the eulerian finite volume commercial code Fluent 6.2. Results show the ability of the vortex method to correctly capture fiuid dynamics, as well as the efficiency of each method for the force and moment calculations.