Numerous people lose motor capabilities of their hands every year because of the Stroke. Rehabilitation robot was used to recover the movement ability based on the plasticity theory. Many robots have been proposed but most of them are either expensive or quite complicated.
This thesis presents an adjust wrist rehabilitation robot. The proposed design fully dexterit, utilizes the three rotational motions to rehabilitate the human wrist. A multi-objective optimization problem was applied to increase both stiffness andy of the robot.
The CAD model is constructed and the inverse kinematic, Jacobian matrix, stiffness, dexterity formulas are derived. The workspace atlas is generated. The optimization work is conducted and it proves quick, robust and easy-to-use by the results comparisons.
Lastly, a CAD model was developed and results were verified by animation video and FEA analysis.