This thesis presents the synthesis and design of a three-degree-of-freedom inertia generator. Such a device, intended as a hand-held apparatus, uses one or many masses within a frame which are accelerated in order to render torques to a user. This influences the effort required by the user to move the device, and modifies their perception of its inertia. To achieve this, a simplified one-degree-of-freedom model is first elaborated and implemented in a prototype. With a torque command, a satisfying haptic rendering is obtained, capable of rendering nearly 10 times the intrinsic inertia of the device. Then, five three-degree-of-freedom torque generation concepts are modelled. Three of those are impossible or too complex to implement, leaving only two options : using three orthogonal flywheels, or using a double gimbal gyroscope with one central flywheel. When compared in simulations, the gyroscope concept offers a better efficiency in terms of mass and motor capabilities. As such, it is selected for the prototype. Then, details are given on the various components of the CAD model, the measuring tools, and the real-time model used for the control. Using these, a series of results are obtained. The dynamic model is first validated as accurate using force/torque sensors. Then the device’s ability to produce torque profiles is confirmed. Finally, its inertia generation capabilities are tested. Problems arise due to movement limitations from the power cables and the instability inherent to the gyroscope. They prevent the device to be used as intended, i.e., with the flywheel initially rotating with a large velocity. Instead, by setting it initially at 0 RPM, the device is able to render inertias equivalent to 0.5 to 1.5 its intrinsic inertia. The haptic quality of these renderings is very good, and they are sufficient to demonstrate the validity of the concept as a whole. Finally, to improve the capabilities of the device, it is suggested to use the three flywheels concept instead.