Our recent anterior drawer studies in human cadaveric knees [Guan and Butler, Adv. Bioengng 17, 5 (1990); Guan et al., Trans. orthop. Res. Soc. , 589 (1991)] have suggested that anterior bundles of the anterior cruciate ligament (ACL) develop higher load-related material properties than posterior bundles. This was confirmed when we reevaluated the axial failure data for these bundle-bone specimens from an earlier study [Butler et al., J. Biomechanics 19, 425–432 (1986)]. The purpose of this study was to determine, in a larger data set, if anteromedial and anterolateral bundles of the anterior cruciate ligament exhibit significantly larger load-related material properties than the posterior ligament bundles. Seven ACL-bone units from seven donors (the three tissues from the original study plus four new ones) were subdivided into three subunits, preserving the bone insertions. The subunits were failed in tension at a constant strain rate (100% s⁻¹) and four material properties were compared within and between donors. The anterior bundles developed significantly larger moduli, maximum stresses, and strain energy densities to maximum stress than the posterior subunits. Moduli for the anterior vs posterior subunits averaged 284 MPa vs 155 MPa, maximum stresses averaged 38 MPa vs 15 MPa, and strain energy densities averaged 2.7 N m cc⁻¹ vs 1.1 N m cc⁻¹, respectively. No significant differences were found, however, among strains to maximum stress or between any of the other properties for the two anterior subunits. These results are important to the design of ligament replacements and suggest new experiments designed to distinguish in vivo force levels in these ACL bands, a possible reason for the material differences.