Cette thèse présente l'analyse, la synthèse, l'optimisation, le design et la validation expérimentale de mécanismes de sécurité dans le contexte de l'interaction physique humain-robot. Afin d'améliorer la sécurité, une condition essentielle à la coexistence d'humains et de robots, une approche basée sur la conception de manipulateurs intrinsèquement sécuritaires est préférée à des systèmes d'évitement et de détection de collision, pour des raisons de fiabilité. La force maximale de contact survenant lors d'une collision est utilisée comme critère de sécurité pour sa simplicité et sa validité dans le contexte de la robotique.
Pour les robots sériels, il est proposé de placer un limiteur de couple en série avec chaque actionneur tandis que pour les robots suspendus, on opte pour la séparation de la base et de l'effecteur par un mécanisme parallèle dont certains pivots sont remplacés par des limiteurs de couple — formant ainsi un limiteur de force cartésien. L'utilisation de ces mécanismes permet de réduire l'inertie effective du manipulateur lorsqu'une collision survient sans nuire aux performances du robot en situation normale.
Un modèle est d'abord créé afin de comparer par simulation les gains de sécurité obtenus par des limiteurs de couple et d'autres mécanismes de sécurité articulaires utilisés seuls ou en combinaison avec d'autres dispositifs. Des méthodes de commande optimale des seuils de limiteurs de couple ajustables placés en série avec chaque actionneur d'un robot sériel sont ensuite développées. Un indice de performance cinématique est proposé afin d'optimiser la pose et l'architecture d'un tel robot. L'approche et les méthodes développées sont validées expérimentalement à l'aide de prototypes de limiteurs de couple ajustables basés sur la friction placés en série avec les actionneurs d'un robot sériel à quatre degrés de liberté. Finalement, des architectures de limiteurs de force cartésiens sont proposées et optimisées et leur efficacité dans le contexte des robots suspendus est validée expérimentalement.
This thesis presents the analysis, synthesis, optimization, design and experimental validation of safety mechanisms in the context of physical human-robot interaction. In order to improve safety, which is essential to allow the coexistence of humans and robots, an approach based on the design of intrinsically safe manipulators is preferred to collision avoidance and detection systems for reliability reasons. The maximum contact force occuring during a collision is used as a safety criterion due to its simplicity and validity in the context of robotics.
For serial robots, it is proposed to place a torque limiter in series with each actuator whereas for suspended robots, it is preferable to separate the base and the effector with a parallel mechanism in which some joints are replaced with torque limiters — thereby forming a Cartesian force limiting device. The use of such mechanisms allows the reduction of the effective manipulator inertia during a collision without affecting the performances under normal conditions.
A model is first created in order to compare — using simulations — the safety gains obtained with torque limiters with the ones obtained with other articular safety mechanisms when they are implemented alone or in combination with other safety devices. Methods to optimally control the thresholds of adjustable torque limiters placed in series with each actuator of a serial robot are developed. A kinematic performance index is proposed in order to optimize the pose and architecture of such a robot. The approach and the developed methods are experimentally validated using prototypes of adjustable torque limiters based on friction which are placed in series with each actuator of a four-degree-of-freedom robot. Finally, architectures of Cartesian force limiting devices are proposed and optimized and their effectiveness in the context of suspended robots is experimentally validated.